493 research outputs found
Reentrant phase transition in charged colloidal suspensions
We report the observation of a novel phase transition in dilute aqueous suspensions of polystyrene particles as a function of ionic impurity concentration C. The suspension phase separates into dense and rare phases only for a restricted range of C which depends on particle concentration n. The dense phase has liquidlike or crystalline order depending on n and C. Free energies of the homogeneous and the phase-separated states are calculated with an effective interparticle potential. The calculated phase diagram is in qualitative agreement with the present experimental results
Electrophoretic Properties of Highly Charged Colloids: A Hybrid MD/LB Simulation Study
Using computer simulations, the electrophoretic motion of a positively
charged colloid (macroion) in an electrolyte solution is studied in the
framework of the primitive model. Hydrodynamic interactions are fully taken
into account by applying a hybrid simulation scheme, where the charged ions
(i.e. macroion and electrolyte), propagated via molecular dynamics (MD), are
coupled to a Lattice Boltzmann (LB) fluid. In a recent experiment it was shown
that, for multivalent salt ions, the mobility initially increases with
charge density , reaches a maximum and then decreases with further
increase of . The aim of the present work is to elucidate the behaviour
of at high values of . Even for the case of monovalent microions,
we find a decrease of with . A dynamic Stern layer is defined
that includes all the counterions that move with the macroion while subject to
an external electrical field. The number of counterions in the Stern layer,
, is a crucial parameter for the behavior of at high values of
. In this case, the mobility depends primarily on the ratio
(with the valency of the macroion). The previous contention that
the increase in the distortion of the electric double layer (EDL) with
increasing leads to the lowering of does not hold for high
. In fact, we show that the deformation of the EDL decreases with
increase of . The role of hydrodynamic interactions is inferred from
direct comparisons to Langevin simulations where the coupling to the LB fluid
is switched off. Moreover, systems with divalent counterions are considered. In
this case, at high values of the phenomenon of charge inversion is
found.Comment: accepted in J. Chem Phys., 10 pages, 9 figure
Confocal laser scanning microscopy: applications in material science and technology
Confocal laser scanning microscope (CLSM) has great advantage over a conventional microscope because it rejects the light that does not come from the focal plane, enabling one to perform optical slicing and construction of three-dimensional (3D) images. Further its high axial resolution, sharp image quality and associated quantitative image analysis provide vital structural information in the mesoscopic range for the full 3D realization of the microstructure. Because of this unique feature, CLSM is now finding wider applications in the study of variety of materials and processes such as phase separation in binary polymer mixtures, fracture toughness in alloys, in determining residual strains in fibre-reinforced metal composites, and in microvisualization of corrosion. This paper reviews some of these recent applications and also discusses our results on colloidal dispersions. CLSM has been used to characterize the amorphous structure in highly-charged colloidal systems which have undergone gas-solid transition. CLSM images show presence of large voids deep inside the disordered suspensions. Frame averaged images reveal that the structural disorder is amorphous. The reasons for voids coexisting with dense amorphous regions and their implications on colloidal interactions are discussed. The article also reviews the use of fluorescence-CLSM in the investigation of novel materials of technological importance such as template-directed colloidal crystals with preferred orientations and multilayered structures with different crystal plane symmetries. Direct measurement of the interfacial curvatures for a bicontinuous polymer blend system as well as real space measurement of structure in phase separating polymer mixtures are now possible using CLSM. This paper reviews some of these results highlighting the unique advantages of confocal microscopy for better understanding of the microstructure and mechanistic aspects of various important phenomena in a large variety of materials
Detecting Higgs Boson Decay to Neutralinos at Hadron Supercolliders
We examine prospects for detecting the neutral Higgs bosons of minimal
supersymmetric models (MSSM) when their decays into neutralino pairs are
kinematically allowed. The best signature appears to be
H_h,H_p\to\tz_2\tz_2\to 4\ell +\eslt. We argue that Standard Model
contributions to this signature are negligible, and examine regions of MSSM
parameter space where the four lepton mode should be observable at the Large
Hadron Collider. The same signal can also come from continuum neutralino pair
production. We propose a set of cuts to illustrate that the neutralino decay
mode of the Higgs bosons provides a viable signal over a substantial range of
model parameters, and show that it may be separable from continuum neutralino
production if sufficient integrated luminosity can be accumulated.Comment: 15 pages (REVTEX), 7 figures available by regular mail,
FSU-HEP-940204, UH-511-781-9
Trileptons from Chargino-Neutralino Production at the CERN Large Hadron Collider
We study direct production of charginos and neutralinos at the CERN Large
Hadron Collider. We simulate all channels of chargino and neutralino production
using ISAJET 7.07. The best mode for observing such processes appears to be
pp\to\tw_1\tz_2\to 3\ell +\eslt. We evaluate signal expectations and
background levels, and suggest cuts to optimize the signal. The trilepton mode
should be viable provided m_{\tg}\alt 500-600~GeV; above this mass, the decay
modes \tz_2\to\tz_1 Z and \tz_2\to H_{\ell}\tz_1 become dominant, spoiling
the signal. In the first case, the leptonic branching fraction for decay is
small and additional background from is present, while in the second case,
the trilepton signal is essentially absent. For smaller values of ,
the trilepton signal should be visible above background, especially if
and m_{\tell}\ll m_{\tq}, in which case the leptonic
decays of \tz_2 are enhanced. Distributions in dilepton mass
can yield direct information on neutralino masses due to
the distribution cutoff at m_{\tz_2}-m_{\tz_1}. Other distributions that may
lead to an additional constraint amongst the chargino and neutralino masses are
also examined.Comment: preprint nos. FSU-HEP-940310 and UH-511-786-94, 13 pages (REVTEX)
plus 7 uuencoded figures attache
- …