21 research outputs found
Highly scalable algorithms for scheduling tasks and provisioning machines on heterogeneous computing systems
Includes bibliographical references.2015 Summer.As high performance computing systems increase in size, new and more efficient algorithms are needed to schedule work on the machines, understand the performance trade-offs inherent in the system, and determine which machines to provision. The extreme scale of these newer systems requires unique task scheduling algorithms that are capable of handling millions of tasks and thousands of machines. A highly scalable scheduling algorithm is developed that computes high quality schedules, especially for large problem sizes. Large-scale computing systems also consume vast amounts of electricity, leading to high operating costs. Through the use of novel resource allocation techniques, system administrators can examine this trade-off space to quantify how much a given performance level will cost in electricity, or see what kind of performance can be expected when given an energy budget. Trading-off energy and makespan is often difficult for companies because it is unclear how each affects the profit. A monetary-based model of high performance computing is presented and a highly scalable algorithm is developed to quickly find the schedule that maximizes the profit per unit time. As more high performance computing needs are being met with cloud computing, algorithms are needed to determine the types of machines that are best suited to a particular workload. An algorithm is designed to find the best set of computing resources to allocate to the workload that takes into account the uncertainty in the task arrival rates, task execution times, and power consumption. Reward rate, cost, failure rate, and power consumption can be optimized, as desired, to optimally trade-off these conflicting objectives
There is no such thing as ‘undisturbed’ soil and sediment sampling: sampler-induced deformation of salt marsh sediments revealed by 3D X-ray computed tomography
Purpose: Within most environmental contexts, the collection of 'undisturbed' samples is widely relied-upon in studies of soil and sediment properties and structure. However, the impact of sampler-induced disturbance is rarely acknowledged, despite the potential significance of modification to sediment structure for the robustness of data interpretation. In this study, 3D-computed X-ray microtomography (μCT) is used to evaluate and compare the disturbance imparted by four commonly-used sediment sampling methods within a coastal salt-marsh.
Materials and methods: Paired sediment core samples from a restored salt-marsh at Orplands Farm, Essex, UK were collected using four common sampling methods (push, cut, hammer and gouge methods). Sampling using two different area-ratio cores resulted in a total of 16 cores that were scanned using 3D X-Ray computed tomography, to identify and evaluate sediment structural properties of samples that can be attributed to sampling method.
Results and discussion: 3D qualitative analysis identifies a suite of sampling-disturbance structures including gross-scale changes to sediment integrity and substantial modification of pore-space, structure and distribution, independent of sediment strength and stiffness. Quantitative assessment of changes to pore-space and sediment density arising from the four sampling methods offer a means of direct comparison between the impact of depth-sampling methods. Considerable disturbance to samples result from use of push, hammer and auguring samplers, whilst least disturbance is found in samples recovered by cutting and advanced trimming approaches.
Conclusions: It is evident that with the small-bore tubes and samplers commonly used in environmental studies, all techniques result in disturbance to sediment structure to a far greater extent than previously reported, revealed by μCT. This work identifies and evaluates for the first time the full nature, extent and significance of internal sediment disturbance arising from common sampling methods
Conversational strategies of deaf children and their families where English is the second language
SIGLEAvailable from British Library Document Supply Centre-DSC:3739.0605(R000221197) / BLDSC - British Library Document Supply CentreGBUnited Kingdo