1,199 research outputs found
Illustrated key to the genera of free-living marine nematodes of the Order Enoplida
A pictorial key to US genera of free-living marine nematodes
in the order Enoplida is presented. Specific morphological and anatomical features are iUustrated to facilitate use of the key. The purpose of this work is to provide a single key to the genera of enoplid nematodes to facilitate identification of these organisms by nematologists and marine biologists working with meiofauna. (PDF file contains 32 pages.
Amortised resource analysis with separation logic
Type-based amortised resource analysis following Hofmann and Jost—where resources are associated with individual elements of data structures and doled out to the programmer under a linear typing discipline—have been successful in providing concrete resource bounds for functional programs, with good support for inference. In this work we translate the idea of amortised resource analysis to imperative languages by embedding a logic of resources, based on Bunched Implications, within Separation Logic. The Separation Logic component allows us to assert the presence and shape of mutable data structures on the heap, while the resource component allows us to state the resources associated with each member of the structure. We present the logic on a small imperative language with procedures and mutable heap, based on Java bytecode. We have formalised the logic within the Coq proof assistant and extracted a certified verification condition generator. We demonstrate the logic on some examples, including proving termination of in-place list reversal on lists with cyclic tails
Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time
We present faster algorithms for computing the 2-edge and 2-vertex strongly
connected components of a directed graph, which are straightforward
generalizations of strongly connected components. While in undirected graphs
the 2-edge and 2-vertex connected components can be found in linear time, in
directed graphs only rather simple -time algorithms were known. We use
a hierarchical sparsification technique to obtain algorithms that run in time
. For 2-edge strongly connected components our algorithm gives the
first running time improvement in 20 years. Additionally we present an -time algorithm for 2-edge strongly connected components, and thus
improve over the running time also when . Our approach
extends to k-edge and k-vertex strongly connected components for any constant k
with a running time of for edges and for vertices
Exact Algorithms for Maximum Independent Set
We show that the maximum independent set problem (MIS) on an -vertex graph
can be solved in time and polynomial space, which even is
faster than Robson's -time exponential-space algorithm
published in 1986. We also obtain improved algorithms for MIS in graphs with
maximum degree 6 and 7, which run in time of and
, respectively. Our algorithms are obtained by using fast
algorithms for MIS in low-degree graphs in a hierarchical way and making a
careful analyses on the structure of bounded-degree graphs
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
Leader Election in Anonymous Rings: Franklin Goes Probabilistic
We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size
Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes
Many fixed-parameter tractable algorithms using a bounded search tree have
been repeatedly improved, often by describing a larger number of branching
rules involving an increasingly complex case analysis. We introduce a novel and
general search strategy that branches on the forbidden subgraphs of a graph
class relaxation. By using the class of -sparse graphs as the relaxed
graph class, we obtain efficient bounded search tree algorithms for several
parameterized deletion problems. We give the first non-trivial bounded search
tree algorithms for the cograph edge-deletion problem and the trivially perfect
edge-deletion problems. For the cograph vertex deletion problem, a refined
analysis of the runtime of our simple bounded search algorithm gives a faster
exponential factor than those algorithms designed with the help of complicated
case distinctions and non-trivial running time analysis [21] and computer-aided
branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and
Applications (DMAA
On the Number of Synchronizing Colorings of Digraphs
We deal with -out-regular directed multigraphs with loops (called simply
\emph{digraphs}). The edges of such a digraph can be colored by elements of
some fixed -element set in such a way that outgoing edges of every vertex
have different colors. Such a coloring corresponds naturally to an automaton.
The road coloring theorem states that every primitive digraph has a
synchronizing coloring.
In the present paper we study how many synchronizing colorings can exist for
a digraph with vertices. We performed an extensive experimental
investigation of digraphs with small number of vertices. This was done by using
our dedicated algorithm exhaustively enumerating all small digraphs. We also
present a series of digraphs whose fraction of synchronizing colorings is equal
to , for every and the number of vertices large enough.
On the basis of our results we state several conjectures and open problems.
In particular, we conjecture that is the smallest possible fraction of
synchronizing colorings, except for a single exceptional example on 6 vertices
for .Comment: CIAA 2015. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1
Splaying Preorders and Postorders
Let be a binary search tree. We prove two results about the behavior of
the Splay algorithm (Sleator and Tarjan 1985). Our first result is that
inserting keys into an empty binary search tree via splaying in the order of
either 's preorder or 's postorder takes linear time. Our proof uses the
fact that preorders and postorders are pattern-avoiding: i.e. they contain no
subsequences that are order-isomorphic to and ,
respectively. Pattern-avoidance implies certain constraints on the manner in
which items are inserted. We exploit this structure with a simple potential
function that counts inserted nodes lying on access paths to uninserted nodes.
Our methods can likely be extended to permutations that avoid more general
patterns. Second, if is any other binary search tree with the same keys as
and is weight-balanced (Nievergelt and Reingold 1973), then splaying
's preorder sequence or 's postorder sequence starting from takes
linear time. To prove this, we demonstrate that preorders and postorders of
balanced search trees do not contain many large "jumps" in symmetric order, and
exploit this fact by using the dynamic finger theorem (Cole et al. 2000). Both
of our results provide further evidence in favor of the elusive "dynamic
optimality conjecture.
A heuristic algorithm for finding attractive fixed-length circuits in street maps
In this paper we consider the problem of determining fixed-length routes on a street map that start and end at the same location. We propose a heuristic for this problem based on finding pairs of edge-disjoint shortest paths, which can then be combined into a circuit. Various heuristics and filtering techniques are also proposed for improving the algorithm’s performance
- …