77 research outputs found
Elasticity changes anti-correlate with NO production for human endothelial cells stimulated with TNF-
Tumor necrosis factor alpha (TNF-) is a critical cytokine that is involved in systemic inflammatory response and contributes to the activation of the pro-inflammatory phenotype of the endothelium. In the present study, effects of TNF- on morphology and elasticity of endothelium in relation to the production of NO and actin fiber reorganization were analyzed in human dermal microvascular endothelial cells. The cells were incubated in MCDB medium solution and stimulated with 10ng/ml of TNF-. Atomic force microscopy measurements have enabled characterization of cell morphology and elastic properties in physiological conditions. The spectrophotometric Griess method was applied to estimate nitric oxide (NO) production of the cells. We demonstrated that TNF--induced changes in elasticity of endothelium anti-correlate with NO production and are associated with the reorganization of actin cytoskeleton
High-energy electron measurements with thin Si detectors
A technique for measuring high-energy electrons using Si detectors of various
thicknesses that are much smaller than the range of the examined electrons is
presented. The advantages of the method are discussed on the basis of
electron-positron pair creation recently studied in deuteron-deuteron fusion
reactions at very low energies. Careful Geant 4 Monte Carlo simulations enabled
the identification of the main spectral contributions of emitted electrons and
positrons resulting from the energy loss mechanisms and scattering processes
within the target, detector and their holders. Significant changes in the
intensity of the detected electrons, depending on the detector thickness and
the thicknesses of absorption foils placed in the front of the detector could
be observed. The corresponding correction factors have been calculated and can
be used for different applications in basic and applied research
Cellular shear adhesion force measurement and simultaneous imaging by atomic force microscope
This paper presents a sensitive and fast cellular shear adhesion force measurement method using an atomic force microscope (AFM). In the work, the AFM was used both as a tool for the imaging of cells on the nano-scale and as a force sensor for the measurement of the shear adhesion force between the cell and the substrate. After the cell imaging, the measurement of cellular shear adhesion forces was made based on the different positions of the cell on the nano-scale. Moreover, different pushing speeds of probe and various locations of cells were used in experiments to study their influences. In this study, the measurement of the cell adhesion in the upper portion of the cell is different from that in the lower portion. It may reveal that the cancer cells have the metastasis tendency after cultured for 16 to 20 hours, which is significant for preventing metastasis in the patients diagnosed with early cancer lesions. Furthermore, the cellular shear adhesion forces of two types of living cancer cells were obtained based on the measurements of AFM cantilever deflections in the torsional and vertical directions. The results demonstrate that the shear adhesion force of cancer cells is twice as much as the same type of cancer cells with TRAIL. The method can also provide a way for the measurement of the cellular shear adhesion force between the cell and the substrate, and for the simultaneous exploration of cells using the AFM imaging and manipulatio
Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications
Recent measurements of the reaction d(d,p)t in metallic environments at very
low energies performed by different experimental groups point to an enhanced
electron screening effect. However, the resulting screening energies differ
strongly for divers host metals and different experiments. Here, we present new
experimental results and investigations of interfering processes in the
irradiated targets. These measurements inside metals set special challenges and
pitfalls which make them and the data analysis particularly error-prone. There
are multi-parameter collateral effects which are crucial for the correct
interpretation of the observed experimental yields. They mainly originate from
target surface contaminations due to residual gases in the vacuum as well as
from inhomogeneities and instabilities in the deuteron density distribution in
the targets. In order to address these problems an improved differential
analysis method beyond the standard procedures has been implemented. Profound
scrutiny of the other experiments demonstrates that the observed unusual
changes in the reaction yields are mainly due to deuteron density dynamics
simulating the alleged screening energy values. The experimental results are
compared with different theoretical models of the electron screening in metals.
The Debye-H\"{u}ckel model that has been previously proposed to explain the
influence of the electron screening on both nuclear reactions and radioactive
decays could be clearly excluded.Comment: 22 pages, 12 figures, REVTeX4, 2-column format. Submitted to Phys.
Rev. C; accepte
Temporal relationship between systemic endothelial dysfunction and alterations in erythrocyte function in a murine model of chronic heart failure
Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both prognostic factors in heart failure (HF), but the relationship between them is not clear. In this study, we used a unique mouse model of chronic HF driven by cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to characterise the relationship between the development of peripheral ED and the occurrence of structural nanomechanical and biochemical changes in red blood cells (RBCs).Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased endothelial permeability in the brachiocephalic artery. ED in the aorta was associated with impaired nitric oxide (NO) production in the aorta and diminished systemic NO bioavailability. ED in the aorta was also characterised by increased superoxide and eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane composition displayed alterations that did not result in significant changes in their nanomechanical and functional properties. However, 8-month-old Tgαq*44 mice presented greatly accentuated structural and size changes and increased RBC stiffness. In 12-month-old Tgαq*44 mice, the erythropathy was featured by severely altered RBC shape and elasticity, increased RDW, impaired RBC deformability, and increased oxidative stress (GSH/GSSH ratio). Moreover, RBCs taken from 12-month-old Tgαq*44 mice, but not from 12-month-old FVB mice, co-incubated with aortic rings from FVB mice, induced impaired endothelium-dependent vasodilation and this effect was partially reversed by an arginase inhibitor (ABH, 2(S)-amino-6-boronohexanoic acid).In the Tgαq*44 murine model of HF, systemic endothelial dysfunction accelerates erythropathy and, conversely, erythropathy may contribute to endothelial dysfunction. These results suggest that erythropathy may be regarded as a marker and a mediator of systemic endothelial dysfunction in HF. In particular, targeting RBC arginase may represent a novel treatment strategy for systemic endothelial dysfunction in HF. RBC arginase and possibly other RBC-mediated mechanisms may represent novel therapeutic targets for systemic endothelial dysfunction in HF.Endothelial dysfunction (ED) and red blood cell distribution width (RDW) both have prognostic value for heart failure (HF), but it is not known whether these pathologies are related. We comprehensively characterized endothelial and RBC functional status in a unique murine model of chronic heart failure with a prolonged time course of HF progression. Our results suggest that ED accelerates erythropathy and, conversely, erythropathy may contribute to ED. Accordingly, erythropathy in HF reflects ED and involves various changes (in functional, structural, nanomechanical, and biochemical levels) that could have diagnostic and therapeutic significance for HF
The determination of limit values using methods of data clustering
W artykule zaproponowano podejście do wyznaczenia wartości granicznych za pomocą algorytmów rozmytego grupowania danych. Wykorzystano algorytmy FCM, PCM oraz algorytm Gustafsona-Kessela. Eksperyment przeprowadzano na danych symulacyjnych. W tym celu zbudowano model numeryczny maszyny wirnikowej, symulującej określone stany i wielkości niewyważenia. Wyznaczone wartości graniczne porównano z wartościami otrzymanymi przy pomocy metody statystycznej. Wszystkie obliczenia wykonywano w środowisku Matlab-Simulink.The paper describes a methodology for estimating the limit values of char-icteristics of diagnostic signals using methods of fuzzy data clustering (FCM, PCM and Gustafson-Kessel algorithms). The experiment was conducted on simulated data, using a numerical model of a rotor machine, simulating given inbalanced states. Limits were compared with value estimating using the statistical method
- …