513 research outputs found
Spring Changeover of the Middle Atmosphere Circulation Compared with Rocket Wind Data up to 80 Km
The middle atmosphere circulation is governed by two seasonal basic states in winter and summer, twice a year separated by relatively shortlived reversal periods. These seasonal basic states of circulation and the spring changeover period between them are investigated
Variability of quasi-stationary planetary waves
The results of the analysis of nonzonal perturbations (m = 1, 2, 3) of the geopotential field at a 30 mb level are presented. A long period modulation of the harmonics' amplitude is discovered. Calculations of eigenfunctions and eigennumbers of the Laplace tidal equation are carried out for a real latitudinal wind profile. The observed first zonal harmonic in different years is caused by the same mode. Thus, the difference in the wave amplitudes could not be accounted for by the difference in stratospheric zonal circulation in different years and should be related to tropospheric processes
Valley separation in graphene by polarized light
We show that the optical excitation of graphene with polarized light leads to
the pure valley current where carriers in the valleys counterflow. The current
in each valley originates from asymmetry of optical transitions and electron
scattering by impurities owing to the warping of electron energy spectrum. The
valley current has strong polarization dependence, its direction is opposite
for normally incident beams of orthogonal linear polarizations. In undoped
graphene on a substrate with high susceptibility, electron-electron scattering
leads to an additional contribution to the valley current that can dominate.Comment: 4+ pages, 2 figure
Orbital photogalvanic effects in quantum-confined structures
We report on the circular and linear photogalvanic effects caused by
free-carrier absorption of terahertz radiation in electron channels on
(001)-oriented and miscut silicon surfaces. The photocurrent behavior upon
variation of the radiation polarization state, wavelength, gate voltage and
temperature is studied. We present the microscopical and phenomenological
theory of the photogalvanic effects, which describes well the experimental
results. In particular, it is demonstrated that the circular (photon-helicity
sensitive) photocurrent in silicon-based structures is of pure orbital nature
originating from the quantum interference of different pathways contributing to
the absorption of monochromatic radiation.Comment: 8 pages, 5 figures, two culumne
Tunneling spin-galvanic effect
It has been shown that tunneling of spin-polarized electrons through a
semiconductor barrier is accompanied by generation of an electric current in
the plane of the interfaces. The direction of this interface current is
determined by the spin orientation of the electrons, in particular the current
changes its direction if the spin orientation changes the sign. Microscopic
origin of such a 'tunneling spin-galvanic' effect is the spin-orbit
coupling-induced dependence of the barrier transparency on the spin orientation
and the wavevector of electrons.Comment: 3 pages, 2 figure
Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors
We demonstrate the injection of pure valley-orbit currents in multivalley semiconductors and present the phenomenological theory of this effect. We studied photoinduced transport in (111)-oriented silicon metaloxide-semiconductor field effect transistors at room temperature. By shining circularly polarized light on exact oriented structures with six equivalent valleys, nonzero electron fluxes within each valley are generated, which
compensate each other and do not yield a net electric current. By disturbing the balance between the valley fluxes, we demonstrate that the pure valley-orbit currents can be converted into a measurable electric current
- …