569 research outputs found
Deep recommender engine based on efficient product embeddings neural pipeline
Predictive analytics systems are currently one of the most important areas of
research and development within the Artificial Intelligence domain and
particularly in Machine Learning. One of the "holy grails" of predictive
analytics is the research and development of the "perfect" recommendation
system. In our paper, we propose an advanced pipeline model for the multi-task
objective of determining product complementarity, similarity and sales
prediction using deep neural models applied to big-data sequential transaction
systems. Our highly parallelized hybrid model pipeline consists of both
unsupervised and supervised models, used for the objectives of generating
semantic product embeddings and predicting sales, respectively. Our
experimentation and benchmarking processes have been done using pharma industry
retail real-life transactional Big-Data streams.Comment: 2018 17th RoEduNet Conference: Networking in Education and Research
(RoEduNet
- …