8 research outputs found
Assessment of Mechanical/Chemical Properties and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Sr/F-Bioactive Glass Nanoparticles and Methacrylate Functionalized Polyacids
This study prepared low-toxicity, elemental-releasing resin-modified glass ionomer cements (RMGICs). The effect of 2-hydroxyethyl methacrylate (HEMA, 0 or 5 wt%) and Sr/F-bioactive glass nanoparticles (Sr/F-BGNPs, 5 or 10 wt%) on chemical/mechanical properties and cytotoxicity were examined. Commercial RMGIC (Vitrebond, VB) and calcium silicate cement (Theracal LC, TC) were used as comparisons. Adding HEMA and increasing Sr/F-BGNPs concentration decreased monomer conversion and enhanced elemental release but without significant effect on cytotoxicity. Rising Sr/F-BGNPs reduced the strength of the materials. The degree of monomer conversion of VB (96%) was much higher than that of the experimental RMGICs (21–51%) and TC (28%). The highest biaxial flexural strength of experimental materials (31 MPa) was significantly lower than VB (46 MPa) (p < 0.01) but higher than TC (24 MPa). The RMGICs with 5 wt% HEMA showed higher cumulative fluoride release (137 ppm) than VB (88 ppm) (p < 0.01). Unlike VB, all experimental RMGICs showed Ca, P, and Sr release. Cell viability in the presence of extracts from experimental RMGICs (89–98%) and TC (93%) was significantly higher than for VB (4%). Experimental RMGICs showed desirable physical/mechanical properties with lower toxicity than the commercial material
Effect of glass and polyacid preparations on the strength of glass ionomer cements for dental applications
Glass ionomer cements (GICs), widely used as restorative materials in dentistry, are principally composed of fluoroaluminosilicateglass powder combined with a water-soluble polyacid. The investigation of new glass compositions and polyacid components are very important to improve the mechanical properties of these cements. The objective of this work was to prepare glass ionomers and polyacids for the use as GICs. The effects of spherical bodies, Al2O3:SiO2 ratios, replacing CaO by SrO, and ZrO2 adding in glass powder in combination with the variation of acidic copolymer concentration on the compressive strength were investigated and discussed
Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography
Porous oligolactide-hydroxyapatite composite scaffolds were obtained by stereolithographic fabrication. Gentamicin was then coated on the scaffolds afterwards, to achieve antimicrobial delivery ability to treat bone infection. The scaffolds examined by stereomicroscope, SEM, and μCT-scan showed a well-ordered pore structure with uniform pore distribution and pore interconnectivity. The physical and mechanical properties of the scaffolds were investigated. It was shown that not only porosity but also scaffold structure played a critical role in governing the strength of scaffolds. A good scaffold design could create proper orientation of pores in a way to strengthen the scaffold structure. The drug delivery profile of the porous scaffolds was also analyzed using microbiological assay. The release rates of gentamicin from the scaffolds showed prolonged drug release at the levels higher than the minimum inhibitory concentrations for S. aureus and E. coli over a 2-week period. It indicated a potential of the scaffolds to serve as local antibiotic delivery to prevent bacterial infection
The development of resin-coating materials for enhancing elemental release of coated glass ionomer cements
This study aimed to develop resin coatings containing monocalcium phosphate monohydrate (MCPM), Sr/F-doped bioactive glass (Sr/F-BAGs), and pre-reacted glass ionomer fillers (SPG) that enhance ion release without detrimentally affecting the mechanical properties of GIC. The objective of this study was to evaluate the degree of monomer conversion (DC), biaxial flexural strength, surface microhardness, and ion release of the GICs coated with experimental coating materials compared to a commercial product (EQUIA Coat, EC). Four experimental resin coating materials containing 10–20 wt% of MCPM with Sr/F-BAGs and 5–10 wt% SPG were prepared. The DC of the coating material was determined using ATR-FTIR. The flexural strength and surface microhardness of the coated GICs were assessed. Fluoride and elemental (Ca,P,Sr,Si,Al) release were measured using fluoride-specific electrodes and ICP-OES. The DC of the experimental coating material (60–69 %) was higher than that of EC (55 %). The strength of GICs coated with experimental materials (35–40 MPa) was comparable to EC (37 MPa). However, their surface microhardness (13–24 VHN) was lower than EC (44 VHN). The experimental coating materials reduced fluoride release by ∼43 %, similar to EC (∼40 %). However, experimental coating materials promoted higher P and Sr release than EC. In conclusion, GICs coated with the experimental resin coating containing ion-releasing additives exhibited mechanical properties similar to those of the commercial product. The new coating materials promoted a higher level of ion release for GICs. These properties could potentially enhance remineralizing actions for the coated GICs
Rheological Properties, Surface Microhardness, and Dentin Shear Bond Strength of Resin-Modified Glass Ionomer Cements Containing Methacrylate-Functionalized Polyacids and Spherical Pre-Reacted Glass Fillers
The aim of this study was to prepare experimental resin-modified glass ionomer cements (RMGICs) containing low levels of hydroxyethyl methacrylate (HEMA) for pulp protection. Liquid and powder phases of the experimental RMGICs were polyacid functionalized with methacrylate groups and spherical pre-reacted glass fillers (SPG). Two types of liquid phase containing 0 wt. % HEMA (CM liquid) or 5 wt. % HEMA (CMH liquid) were formulated. The experimental RMGICs were prepared by mixing SPG fillers with CM liquid (F1) or CMH liquid (F2). Rheological properties were examined using a strain-controlled rheometer (n = 5). The Vickers microhardness (n = 5) and dentin shear bond strength (SBS) (n = 10) of the materials were tested. Commercial pulp protection materials (Vitrebond and TheraCal LC) were used as comparisons. The viscosity and surface microhardness of F1 (22 m Pa·s, 18 VHN) and F2 (18 m Pa·s, 16 VHN) were significantly higher than those of Vitrebond (6 mPa·s, 6 VHN) and TheraCal (0.1 mPa·s, 7 VHN). The SBS of F1 (10.7 MPa) and F2 (11.9 MPa) was comparable to that of Vitrebond (15.4 MPa) but higher than that of TheraCal LC (5.6 MPa). The addition of 5 wt. % HEMA showed no significant effect on viscosity, surface microhardness, or SBS of the experimental RMGICs. The experimental materials showed higher viscosity and microhardness but similar SBS when compared with the commercial RMGIC
Assessment of Mechanical/Chemical Properties and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Sr/F-Bioactive Glass Nanoparticles and Methacrylate Functionalized Polyacids
This study prepared low-toxicity, elemental-releasing resin-modified glass ionomer cements (RMGICs). The effect of 2-hydroxyethyl methacrylate (HEMA, 0 or 5 wt%) and Sr/F-bioactive glass nanoparticles (Sr/F-BGNPs, 5 or 10 wt%) on chemical/mechanical properties and cytotoxicity were examined. Commercial RMGIC (Vitrebond, VB) and calcium silicate cement (Theracal LC, TC) were used as comparisons. Adding HEMA and increasing Sr/F-BGNPs concentration decreased monomer conversion and enhanced elemental release but without significant effect on cytotoxicity. Rising Sr/F-BGNPs reduced the strength of the materials. The degree of monomer conversion of VB (96%) was much higher than that of the experimental RMGICs (21–51%) and TC (28%). The highest biaxial flexural strength of experimental materials (31 MPa) was significantly lower than VB (46 MPa) (p p < 0.01). Unlike VB, all experimental RMGICs showed Ca, P, and Sr release. Cell viability in the presence of extracts from experimental RMGICs (89–98%) and TC (93%) was significantly higher than for VB (4%). Experimental RMGICs showed desirable physical/mechanical properties with lower toxicity than the commercial material