59 research outputs found

    Chlorine and Bromine Isotope Fractionation of Halogenated Organic Pollutants on Gas Chromatography Columns

    Full text link
    Compound-specific chlorine/bromine isotope analysis (CSIA-Cl/Br) has become a useful approach for degradation pathway investigation and source appointment of halogenated organic pollutants (HOPs). CSIA-Cl/Br is usually conducted by gas chromatography-mass spectrometry (GC-MS), which could be negatively impacted by chlorine and bromine isotope fractionation of HOPs on GC columns. In this study, 31 organochlorines and 4 organobromines were systematically investigated in terms of Cl/Br isotope fractionation on GC columns using GC-double focus magnetic-sector high resolution MS (GC-DFS-HRMS). On-column chlorine/bromine isotope fractionation behaviors of the HOPs were explored, presenting various isotope fractionation modes and extents. Twenty-nine HOPs exhibited inverse isotope fractionation, and only polychlorinated biphenyl-138 (PCB-138) and PCB-153 presented normal isotope fractionation. And no observable isotope fractionation was found for the rest four HOPs, i.e., PCB-101, 1,2,3,7,8-pentachlorodibenzofuran, PCB-180 and 2,3,7,8-tetrachlorodibenzofuran. The isotope fractionation extents of different HOPs varied from below the observable threshold (0.50%) to 7.31% (PCB-18). The mechanisms of the on-column chlorine/bromine isotope fractionation were tentatively interpreted with the Craig-Gordon model and a modified two-film model. Inverse isotope effects and normal isotope effects might contribute to the total isotope effects together and thus determine the isotope fractionation directions and extents. Proposals derived from the main results of this study for CSIA-Cl/Br research were provided for improving the precision and accuracy of CSIA-Cl/Br results. The findings of this study will shed light on the development of CSIA-Cl/Br methods using GC-MS techniques, and help to implement the research using CSIA-Cl/Br to investigate the environmental behaviors and pollution sources of HOPs.Comment: 30 pages, 5 figure

    Holocene vegetational and climatic history of the Xuguo Co catchment in the central Tibetan Plateau

    Get PDF
    A 101-cm core was taken from a large lake in the central Tibetan Plateau. Its pollen and loss-on-ignition analyses provide a Holocene vegetational, climatic, and environmental history of the lake catchment. Pollen analysis shows that: dense steppe dominated regional vegetation in the early Holocene (9,200–8,000 cal. yr BP); regional vegetation coverage gradually decreased in the middle Holocene (8,000–4,100 cal. yr BP); and marsh meadow grew on the lake edge and sparse steppe occupied the lake catchment after 4,100 cal. yr BP. Our result also reveals that: 9,200–8,000 cal. yr BP witnessed summer temperature, monsoonal rainfall, and lake-level maxima, as well as few winter and spring aeolian activities and frequent wildfires; 8,000–4,100 cal. yr BP saw a nonlinear decline in temperature, rainfall, lake level, and wildfires; and modern climatic and environmental conditions were established after 4,100 cal. yr BP. Three major monsoon-weakening events at ca. 6,700, 5,800, and 4,100 cal. yr BP were detected by pollen signals and proxies of the climate and environment

    Metagenomic Next-Generation Sequencing (mNGS) for the Diagnosis of Pulmonary Aspergillosis

    Get PDF
    The diagnosis of pulmonary aspergillosis is a critical step in initiating prompt treatment and improving patients’ prognosis. Currently, microbiological analysis of pulmonary aspergillosis involves fungal smear and culture, serum (1,3)-β-D-glucan (G) or galactomannan (GM) tests, and polymerase chain reaction (PCR). However, these methods have limitations. Recent studies have demonstrated that polymorphisms in pentraxin3 (PTX3), a soluble pattern recognition receptor, are associated with increased susceptibility to invasive aspergillosis. mNGS, a new microbial diagnostic method, has emerged as a promising alternative. It has high sensitivity in identifying pulmonary aspergillosis and can accurately distinguish species. Additionally, it outperforms other methods in detecting mixed infections and instructing the adjustment of antimicrobial treatments. As a result, mNGS has the potential to be adopted as the gold standard for the diagnosis of pulmonary aspergillosis
    • …
    corecore