1,693 research outputs found
Slabs in the lower mantle and their modulation of plume formation
Numerical mantle convection models indicate that subducting slabs can reach the core-mantle boundary (CMB) for a wide range of assumed material properties and plate tectonic histories. An increase in lower mantle viscosity, a phase transition at 660 km depth, depth-dependent thermal expansivity, and depth-dependent thermal diffusivity do not preclude model slabs from reaching the CMB. We find that ancient slabs could be associated with lateral temperature anomalies ~500°C cooler than ambient mantle. Plausible increases of thermal conductivity with depth will not cause slabs to diffuse away. Regional spherical models with actual plate evolutionary models show that slabs are unlikely to be continuous from the upper mantle to the CMB, even for radially simple mantle structures. The observation from tomography showing only a few continuous slab-like features from the surface to the CMB may be a result of complex plate kinematics, not mantle layering. There are important consequences of deeply penetrating slabs. Our models show that plumes preferentially develop on the edge of slabs. In areas on the CMB free of slabs, plume formation and eruption are expected to be frequent while the basal thermal boundary layer would be thin. However, in areas beneath slabs, the basal thermal boundary layer would be thicker and plume formation infrequent. Beneath slabs, a substantial amount of hot mantle can be trapped over long periods of time, leading to âmega-plumeâ formation. We predict that patches of low seismic velocity may be found beneath large-scale high seismic velocity structures at the core-mantle boundary. We find that the location, buoyancy, and geochemistry of mega-plumes will differ from those plumes forming at the edge of slabs. Various geophysical and geochemical implications of this finding are discussed
On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle
The two large low shear velocity provinces (LLSVPs) at the base of the lower mantle are prominent features in all shear wave tomography models. Various lines of evidence suggest that the LLSVPs are thermochemical and are stable on the order of hundreds of million years. Hot spots and large igneous province eruption sites tend to cluster around the edges of LLSVPs. With 3-D global spherical dynamic models, we investigate the location of plumes and lateral movement of chemical structures, which are composed of dense, high bulk modulus material. With reasonable values of bulk modulus and density anomalies, we find that the anomalous material forms dome-like structures with steep edges, which can survive for billions of years before being entrained. We find that more plumes occur near the edges, rather than on top, of the chemical domes. Moreover, plumes near the edges of domes have higher temperatures than those atop the domes. We find that the location of the downwelling region (subduction) controls the direction and speed of the lateral movement of domes. Domes tend to move away from subduction zones. The domes could remain relatively stationary when distant from subduction but would migrate rapidly when a new subduction zone initiates above. Generally, we find that a segment of a dome edge can be stationary for 200 million years, while other segments have rapid lateral movement. In the presence of time-dependent subduction, the computations suggest that maintaining the lateral fixity of the LLSVPs at the core-mantle boundary for longer than hundreds of million years is a challenge
A benchmark study on mantle convection in a 3-D spherical shell using CitcomS
As high-performance computing facilities and sophisticated modeling software become available, modeling mantle convection in a three-dimensional (3-D) spherical shell geometry with realistic physical parameters and processes becomes increasingly feasible. However, there is still a lack of comprehensive benchmark studies for 3-D spherical mantle convection. Here we present benchmark and test calculations using a finite element code CitcomS for 3-D spherical convection. Two classes of model calculations are presented: the Stokes' flow and thermal and thermochemical convection. For Stokes' flow, response functions of characteristic flow velocity, topography, and geoid at the surface and core-mantle boundary (CMB) at different spherical harmonic degrees are computed using CitcomS and are compared with those from analytic solutions using a propagator matrix method. For thermal and thermochemical convection, 24 cases are computed with different model parameters including Rayleigh number (7 Ă 10^3 or 10^5) and viscosity contrast due to temperature dependence (1 to 10^7). For each case, time-averaged quantities at the steady state are computed, including surface and CMB Nussult numbers, RMS velocity, averaged temperature, and maximum and minimum flow velocity, and temperature at the midmantle depth and their standard deviations. For thermochemical convection cases, in addition to outputs for thermal convection, we also quantified entrainment of an initially dense component of the convection and the relative errors in conserving its volume. For nine thermal convection cases that have small viscosity variations and where previously published results were available, we find that the CitcomS results are mostly consistent with these previously published with less than 1% relative differences in globally averaged quantities including Nussult numbers and RMS velocities. For other 15 cases with either strongly temperature-dependent viscosity or thermochemical convection, no previous calculations are available for comparison, but these 15 test calculations from CitcomS are useful for future code developments and comparisons. We also presented results for parallel efficiency for CitcomS, showing that the code achieves 57% efficiency with 3072 cores on Texas Advanced Computing Center's parallel supercomputer Ranger
Compressible thermochemical convection and application to lower mantle structures
A new finite element code for compressible thermochemical convection is developed to study the stability of a chemical layer at the base of the mantle. Using composition-dependent compressibility and a density difference between compositions at a reference pressure, a composition-dependent density profile is derived. Together with depth-dependent thermal expansion, this combination of parameters yields a wide range of dynamic evolutions for the chemical layer. The chemical structures are classified into five major categories (classical plumes, mushroom-shaped plume, domes, ridges, and continuous layers) and a few abnormal cases, such as hourglass-shaped plumes and columnar plumes. Several models have a chemical structure morphologically similar to the African low V_S structure in the lower mantle, at least at a single time. Guided by our models, several dynamic scenarios are proposed for the dynamic nature of the lower mantle low-velocity structures (a.k.a. superplumes), including plumes at an early stage, plume clusters, ridges, passive piles, sluggish domes, and high-bulk-modulus domes. We predict seismic velocity anomalies from these dynamic models. The thermoelastic parameters used in the conversion are additional constraints. We compare the density structure with normal mode inversion, the predicted seismic signature observations, and the required thermoelastic parameters with mineral physics data. Among the proposed scenarios, only the scenario of high-bulk-modulus domes satisfies all constraints simultaneously. The implication on the geochemistry and mineralogy of lower mantle chemical structures is discussed
Metastable superplumes and mantle compressibility
Seismically, the African superplume is known to have a sharp lateral transition in V_S and an interface between seismic anomalies with high relief. Such a structure is usually unstable in conventional thermo-chemical convection models. Using a compressible thermo-chemical convection model in which each material has a distinct equation of state, we find an expanded regime of metastable superplumes. In the preferred model, superplume material has a bulk modulus 6% higher and density 2.25% higher than ambient mantle. The inferred physical properties of the superplume are consistent with subducted oceanic crust, simultaneously satisfying seismological, geodynamical, mineralogical and geochemical constraints
THE ROLE OF FRICTIONAL STRENGTH
[1] At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25 km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1° to 15°, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones
Nephrectomy for a case of intrarenal dermoid cyst: was it an appropriate decision?
Dermoid cyst in a kidney is rarely seen. We report a case of intrarenal dermoid cyst which mimics malignant renal tumour and discuss the dilemma in managing this disease
Examining the influence of parental emotion socialisation and parent emotion regulation on child emotion regulation
The development of emotion regulation has been the focus of much research due to its long-term impact on an individualâs wellbeing and mental health. Parents often play a crucial role in fostering the development of emotion regulation in their children. This thesis seeks to understand the influence of two parent factors: emotion socialisation and emotion regulation on childrenâs emotion regulatory abilities in three parts. Part One of the thesis is a systematic review of the existing literature that examines the relationship between parental emotion socialisation practices and child emotion regulation. The studies suggest that supportive emotion socialisation is associated with better child emotion regulation, and unsupportive emotion socialisation is associated with poorer child emotion regulation, indicating the importance of parentsâ emotion socialisation practices in the development of their childrenâs regulatory abilities. Part Two of the thesis is an empirical paper examining the relationship between parent and child emotion regulation. Children were observed across three time-points on two emotion regulatory tasks (fear and anger episodes, Lab-TAB). The raw data for the fear episode was jointly managed with Nikki Lim-Ashworth, another trainee. Parent emotion regulation strategies that worsen othersâ emotions predicted reduced child emotion reactivity in the fear episode and an increased use of redirected action strategies in the anger episode. Parent emotion regulation was also found to have a significant relationship with their emotion socialisation practices. The final part of the thesis is a critical appraisal discussing the research rationale. It explores the process of undertaking this project and raises additional clinical and research implications of the findings
Anodic-oxide-induced interdiffusion in quantum wells structure
Enhancement of interdiffusion in GaAs/AlGaAs quantum wells (QWs) due to anodic oxides was studied. Photoluminescence and diffused QW modeling were used to understand the effects of intermixing on the QW structure. The activation energy is similar to those obtained from SiO 2 cap annealed quantum well structures.published_or_final_versio
Energy Security within Malaysiaâs Water-Energy-Food NexusâA Systems Approach
While knowledge of energy security has been thorough and elaborate, understanding energy security within the context of the water-energy-food nexus, where substantial inter-sectoral causes and effects exist, is less established, more so for Malaysia. This paper investigates the impact of two energy scenarios on identified key indicators within the context of the water-energy-food nexus. By utilizing a mixed method of qualitative interview and quantitative system dynamics modelling, representative causal loop diagrams and stock-flow diagrams were constructed to predict and allow for the analysis of behaviors of selected key indicators. Key findings include the importance of allowing a reasonable penetration of 20% renewable energy for the long term, and having a proper consideration for nuclear energy to assist in keeping energy costs low for the mid-term
- âŠ