35,023 research outputs found

    Dynamic Adaptation on Non-Stationary Visual Domains

    Full text link
    Domain adaptation aims to learn models on a supervised source domain that perform well on an unsupervised target. Prior work has examined domain adaptation in the context of stationary domain shifts, i.e. static data sets. However, with large-scale or dynamic data sources, data from a defined domain is not usually available all at once. For instance, in a streaming data scenario, dataset statistics effectively become a function of time. We introduce a framework for adaptation over non-stationary distribution shifts applicable to large-scale and streaming data scenarios. The model is adapted sequentially over incoming unsupervised streaming data batches. This enables improvements over several batches without the need for any additionally annotated data. To demonstrate the effectiveness of our proposed framework, we modify associative domain adaptation to work well on source and target data batches with unequal class distributions. We apply our method to several adaptation benchmark datasets for classification and show improved classifier accuracy not only for the currently adapted batch, but also when applied on future stream batches. Furthermore, we show the applicability of our associative learning modifications to semantic segmentation, where we achieve competitive results

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica

    Improvement of ride quality for patient lying in ambulance with a new hydro-pneumatic suspension

    Full text link
    © The Author(s) 2019. Instability caused by emergency braking and steering during ambulance operation would easily lead to a sharp rise of blood pressure in patient’s head, which would further cause a secondary injury to the patient. Furthermore, the vibration generated by uneven road would result in patient’s nausea and deterioration of patient’s condition. This article proposes a pitch–roll-interconnected hydro-pneumatic suspension system which can achieve the resistance control for pitch, roll, and bounce modes of ambulances to improve the stability and attenuate the vibration for the lying patients. The ambulance with pitch–roll-interconnected hydro-pneumatic suspension is characterized by 7 degrees of freedom dynamic model, in which the characteristics of pitch–roll-interconnected hydro-pneumatic suspension are explicitly formulized using hydrodynamic equation derivation. A motion-mode energy spectral density method is proposed to decouple the vibration energy for bounce, pitch, and roll modes in frequency domain. Subsequently, the parameter design approach incorporated with the suspension characteristic equations and motion-mode energy spectral density method is also presented to optimize the lying patient’s ride comfort and ambulance’s handling stability. The numerical simulation results show that the proposed pitch–roll-interconnected hydro-pneumatic suspension system can simultaneously provide pitch–roll–stiffness and damping without generating additional bounce-stiffness, resulting in superior ride comfort and handling stability compared to the conventional suspension
    corecore