2 research outputs found
Fermions from Half-BPS Supergravity
We discuss collective coordinate quantization of the half-BPS geometries of
Lin, Lunin and Maldacena (hep-th/0409174). The LLM geometries are parameterized
by a single function on a plane. We treat this function as a collective
coordinate. We arrive at the collective coordinate action as well as path
integral measure by considering D3 branes in an arbitrary LLM geometry. The
resulting functional integral is shown, using known methods (hep-th/9309028),
to be the classical limit of a functional integral for free fermions in a
harmonic oscillator. The function gets identified with the classical limit
of the Wigner phase space distribution of the fermion theory which satisfies u
* u = u. The calculation shows how configuration space of supergravity becomes
a phase space (hence noncommutative) in the half-BPS sector. Our method sheds
new light on counting supersymmetric configurations in supergravity.Comment: 28 pages, 2 figures, epsf;(v3) eq. (3.3) clarified and notationally
simplified; version to appear in JHE
Partition functions and elliptic genera from supergravity
We develop the spacetime aspects of the computation of partition functions
for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical
result are included systematically, laying the groundwork for comparison with
CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a
better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from
the point of view of bulk physics. Besides clarifying various issues, we also
extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page