82 research outputs found
A MEMS Light Modulator Based on Diffractive Nanohole Gratings
We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V
Poole-Frenkel Effect and Phonon-Assisted Tunneling in GaAs Nanowires
We present electronic transport measurements of GaAs nanowires grown by
catalyst-free metal-organic chemical vapor deposition. Despite the nanowires
being doped with a relatively high concentration of substitutional impurities,
we find them inordinately resistive. By measuring sufficiently high
aspect-ratio nanowires individually in situ, we decouple the role of the
contacts and show that this semi-insulating electrical behavior is the result
of trap-mediated carrier transport. We observe Poole-Frenkel transport that
crosses over to phonon-assisted tunneling at higher fields, with a tunneling
time found to depend predominantly on fundamental physical constants as
predicted by theory. By using in situ electron beam irradiation of individual
nanowires we probe the nanowire electronic transport when free carriers are
made available, thus revealing the nature of the contacts
Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling
We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality
Observation of Space-Charge-Limited Transport in InAs Nanowires
Recent theory and experiment have suggested that space-charge-limited
transport should be prevalent in high aspect-ratio semiconducting nanowires. We
report on InAs nanowires exhibiting this mode of transport and utilize the
underlying theory to determine the mobility and effective carrier concentration
of individual nanowires, both of which are found to be diameter-dependent.
Intentionally induced failure by Joule heating supports the notion of
space-charge-limited transport and proposes reduced thermal conductivity due to
the nanowires polymorphism
Unusually strong space-charge-limited current in thin wires
The current-voltage characteristics of thin wires are often observed to be
nonlinear, and this behavior has been ascribed to Schottky barriers at the
contacts. We present electronic transport measurements on GaN nanorods and
demonstrate that the nonlinear behavior originates instead from
space-charge-limited current. A theory of space-charge-limited current in thin
wires corroborates the experiments, and shows that poor screening in high
aspect ratio materials leads to a dramatic enhancement of space-charge limited
current, resulting in new scaling in terms of the aspect ratio.Comment: 4 pages, 3 figures, to appear in Physical Review Letter
Methods of photoelectrode characterization with high spatial and temporal resolution
Materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials
Filament‐Free Bulk Resistive Memory Enables Deterministic Analogue Switching
Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue‐memory‐based neuromorphic computing can be orders of magnitude more energy efficient at data‐intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer‐sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria‐stabilized zirconia (YSZ), toward eliminating filaments. Filament‐free, bulk‐RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk‐RRAM devices using TiO2‐X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk‐RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy‐efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.A resistive memory cell based on the electrochemical migration of oxygen vacancies for in‐memory neuromorphic computing is presented. By using the average statistical behavior of all oxygen vacancies to store analogue information states, this cell overcomes the stochastic and unpredictable switching plaguing filament‐forming memristors, and instead achieves linear, predictable, and deterministic switching.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/3/adma202003984_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/2/adma202003984-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/1/adma202003984.pd
- …