12 research outputs found

    Deep Selection: A Fully Supervised Camera Selection Network for Surgery Recordings

    Full text link
    Recording surgery in operating rooms is an essential task for education and evaluation of medical treatment. However, recording the desired targets, such as the surgery field, surgical tools, or doctor's hands, is difficult because the targets are heavily occluded during surgery. We use a recording system in which multiple cameras are embedded in the surgical lamp, and we assume that at least one camera is recording the target without occlusion at any given time. As the embedded cameras obtain multiple video sequences, we address the task of selecting the camera with the best view of the surgery. Unlike the conventional method, which selects the camera based on the area size of the surgery field, we propose a deep neural network that predicts the camera selection probability from multiple video sequences by learning the supervision of the expert annotation. We created a dataset in which six different types of plastic surgery are recorded, and we provided the annotation of camera switching. Our experiments show that our approach successfully switched between cameras and outperformed three baseline methods.Comment: MICCAI 202

    ブンレツ コウボ ニ オケル メチルグリオキサール ニ ヨル ストレス デンタツ ケイロ ノ カッセイカ

    No full text
    京都大学0048新制・課程博士博士(農学)甲第13116号農博第1621号新制||農||941(附属図書館)学位論文||H19||N4242(農学部図書室)UT51-2007-H389京都大学大学院農学研究科応用生命科学専攻(主査)教授 喜多 恵子, 教授 江﨑 信芳, 教授 阪井 康能学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDA

    Calcineurin/Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca(2+) in Saccharomyces cerevisiae.

    Get PDF
    Although methylglyoxal is derived from glycolysis, it has adverse effects on cellular function. Hence, the intrinsic role of methylglyoxal in vivo remains to be determined. Glyoxalase 1 is a pivotal enzyme in the metabolism of methylglyoxal in all types of organisms. To learn about the physiological roles of methylglyoxal, we have screened conditions that alter the expression of the gene encoding glyoxalase 1, GLO1, in Saccharomyces cerevisiae. We show that the expression of GLO1 is induced following treatment with Ca2+ and is dependent on the MAPK (mitogen-activated protein kinase) Hog1 protein and the Msn2/Msn4 transcription factors. Intriguingly, the Ca2+-induced expression of GLO1 was enhanced in the presence of FK506, a potent inhibitor of calcineurin. Consequently, the Ca2+-induced expression of GLO1 in a mutant that is defective in calcineurin or Crz1, the sole transcription factor downstream of calcineurin, was much greater than that in the wild-type strain even without FK506. This phenomenon was dependent upon a cis-element, the STRE (stress-response element), in the promoter that is able to mediate the response to Ca2+ signalling together with Hog1 and Msn2/Msn4. The level of Ca2+-induced expression of GLO1 reached a maximum in cells overexpressing MSN2 even when FK506 was not present, whereas in cells overexpressing CRZ1 the level was greatly reduced and increased markedly when FK506 was present. We also found that the levels of Msn2 and Msn4 proteins in Ca2+-treated cells decreased gradually and that FK506 blocked the degradation of Msn2/Msn4. We propose that Crz1 destabilizes Msn2/Msn4 in the nuclei of cells in response to Ca2+ signalling

    Hand Motion-Aware Surgical Tool Localization and Classification from an Egocentric Camera

    No full text
    Detecting surgical tools is an essential task for the analysis and evaluation of surgical videos. However, in open surgery such as plastic surgery, it is difficult to detect them because there are surgical tools with similar shapes, such as scissors and needle holders. Unlike endoscopic surgery, the tips of the tools are often hidden in the operating field and are not captured clearly due to low camera resolution, whereas the movements of the tools and hands can be captured. As a result that the different uses of each tool require different hand movements, it is possible to use hand movement data to classify the two types of tools. We combined three modules for localization, selection, and classification, for the detection of the two tools. In the localization module, we employed the Faster R-CNN to detect surgical tools and target hands, and in the classification module, we extracted hand movement information by combining ResNet-18 and LSTM to classify two tools. We created a dataset in which seven different types of open surgery were recorded, and we provided the annotation of surgical tool detection. Our experiments show that our approach successfully detected the two different tools and outperformed the two baseline methods

    Hand Motion-Aware Surgical Tool Localization and Classification from an Egocentric Camera

    No full text
    Detecting surgical tools is an essential task for the analysis and evaluation of surgical videos. However, in open surgery such as plastic surgery, it is difficult to detect them because there are surgical tools with similar shapes, such as scissors and needle holders. Unlike endoscopic surgery, the tips of the tools are often hidden in the operating field and are not captured clearly due to low camera resolution, whereas the movements of the tools and hands can be captured. As a result that the different uses of each tool require different hand movements, it is possible to use hand movement data to classify the two types of tools. We combined three modules for localization, selection, and classification, for the detection of the two tools. In the localization module, we employed the Faster R-CNN to detect surgical tools and target hands, and in the classification module, we extracted hand movement information by combining ResNet-18 and LSTM to classify two tools. We created a dataset in which seven different types of open surgery were recorded, and we provided the annotation of surgical tool detection. Our experiments show that our approach successfully detected the two different tools and outperformed the two baseline methods

    Multi-Camera Multi-Person Tracking and Re-Identification in an Operating Room

    No full text
    Multi-camera multi-person (MCMP) tracking and re-identification (ReID) are essential tasks in safety, pedestrian analysis, and so on; however, most research focuses on outdoor scenarios because they are much more complicated to deal with occlusions and misidentification in a crowded room with obstacles. Moreover, it is challenging to complete the two tasks in one framework. We present a trajectory-based method, integrating tracking and ReID tasks. First, the poses of all surgical members captured by each camera are detected frame-by-frame; then, the detected poses are exploited to track the trajectories of all members for each camera; finally, these trajectories of different cameras are clustered to re-identify the members in the operating room across all cameras. Compared to other MCMP tracking and ReID methods, the proposed one mainly exploits trajectories, taking texture features that are less distinguishable in the operating room scenario as auxiliary cues. We also integrate temporal information during ReID, which is more reliable than the state-of-the-art framework where ReID is conducted frame-by-frame. In addition, our framework requires no training before deployment in new scenarios. We also created an annotated MCMP dataset with actual operating room videos. Our experiments prove the effectiveness of the proposed trajectory-based ReID algorithm. The proposed framework achieves 85.44% accuracy in the ReID task, outperforming the state-of-the-art framework in our operating room dataset

    A Novel Dissection Method of the Internal Mammary (Thoracic) Artery: Anastomotic Vessel of the DIEP Flap

    No full text
    Summary:. Deep inferior epigastric perforator flaps are commonly used for breast reconstruction using autologous tissue. For such free flaps, the internal mammary artery provides stable blood flow as the recipient for anastomosis. We report a novel dissection method of the internal mammary artery. First, the perichondrium and costal cartilage of the sternocostal joint are dissected with electrocautery. Then, the incision on the perichondrium is extended along the cephalic and caudal ends. Next, this C-shaped superficial layer of perichondrium is elevated from the cartilage. The cartilage is incompletely fractured with electrocautery, with the deep layer of perichondrium intact. Then, the cartilage is completely fractured by leverage and removed. The remaining deep layer of perichondrium is incised at the costochondral junction and shifted aside, revealing the internal mammary artery. The preserved perichondrium creates a rabbet joint to protect the anastomosed artery. This method not only enables a more reliable, safer dissection of the internal mammary artery, but also allows reusage of the perichondrium as underlayment in the setting of anastomosis, and coverage for the incised rib edge, protecting the anastomosed vessels
    corecore