435 research outputs found

    Coupling between pore formation and phase separation in charged lipid membranes

    Get PDF
    We investigated the effect of charge on the membrane morphology of giant unilamellar vesicles (GUVs) composed of various mixtures containing charged lipids. We observed the membrane morphologies by fluorescent and confocal laser microscopy in lipid mixtures consisting of a neutral unsaturated lipid [dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid [dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid [dioleoylphosphatidylglycerol (DOPG()^{\scriptsize{(-)}})], a charged saturated lipid [dipalmitoylphosphatidylglycerol (DPPG()^{\scriptsize{(-)}})], and cholesterol (Chol). In binary mixtures of neutral DOPC/DPPC and charged DOPC/DPPG()^{\scriptsize{(-)}}, spherical vesicles were formed. On the other hand, pore formation was often observed with GUVs consisting of DOPG()^{\scriptsize{(-)}} and DPPC. In a DPPC/DPPG()^{\scriptsize{(-)}}/Chol ternary mixture, pore-formed vesicles were also frequently observed. The percentage of pore-formed vesicles increased with the DPPG()^{\scriptsize{(-)}} concentration. Moreover, when the head group charges of charged lipids were screened by the addition of salt, pore-formed vesicles were suppressed in both the binary and ternary charged lipid mixtures. We discuss the mechanisms of pore formation in charged lipid mixtures and the relationship between phase separation and the membrane morphology. Finally, we reproduce the results seen in experimental systems by using coarse-grained molecular dynamics simulations.Comment: 34 pages, 10 figure

    Approach to the asymptomatic patients with Brugada syndrome

    Get PDF
    Brugada syndrome is an arrhythmogenic disease characterized by an ECG pattern of coved-type ST segment elevation in the right precordial leads and an increased risk of sudden cardiac death (SCD) as a result of polymorphic ventricular tachyarrhythmia or ventricular fibrillation (VF). Data from large patient studies and a meta-analysis of previous reports have shown that patients with a history of syncope or SCD and a spontaneous type 1 Brugada type ECG are at high risk for SCD. However, risk stratification of asymptomatic patients with Brugada type ECG is still a challenge. In particular, the use of electrophysiological study (EPS) for risk stratification remains controversial. Although some investigators have reported the possibility of use of EPS for distinguishing between high- and low-risk patients with Brugada type ECG, no precise predictor of risk for SCD in asymptomatic patients has yet been determined. The approach to treatment of these patients is thus still unclear. Large clinical prospective studies with uniform diagnostic criteria and protocols for EPS as well as extended follow-up periods of over ten years are required for prediction of SCD

    Backward shifts on function algebras

    Get PDF
    J.R. Holub (1988) 1101 introduced the concept of backward shift on Banach spaces. We show that an infinite-dimensional function algebra does not admit a backward shift. Moreover, we define a backward quasi-shift as a weak type of a backward shift, and show that a function algebra A does not admit it, under the assumption that the Choquet boundary of A has at most finitely many isolated points.ArticleJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. 377(1):135-144 (2011)journal articl

    Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans

    Get PDF
    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition, the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-noncorrelated class according to C. elegans founder cell lineages (1.2, 0.81, and Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures

    Single-Molecule Analysis of Epidermal Growth Factor Signaling that Leads to Ultrasensitive Calcium Response

    Get PDF
    AbstractQuantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF
    corecore