23 research outputs found

    Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells

    No full text
    Composite ionic conductors for intermediate temperature fuel cells (ITFC) were produced by a combination of yttrium-substituted barium zirconate (BaZr0.9Y0.1 O2.95, BZY) and eutectic compositions of alkali carbonates (Li2CO3, Na2CO3, and K2CO3, abbreviated L, N, K). These materials were characterized by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. The combination of BZY with alkali metal carbonate promotes the densification and enhances the ionic conductivity, which reaches 87 mS·cm−1 at 400 °C for the BZY–LNK40 composite. In addition, the increase of the conductivity as a function of hydrogen partial pressure suggests that protons are the main charge carriers. The results are interpreted in terms of the transfer of protons from the ceramic component to the carbonate phase in the interfacial region

    Advanced electrodes for intermediate temperature proton conducting fuel cell

    No full text
    International audienc

    Pile à combustible à céramique conductrice protonique (développement, optimisation des matériaux, réalisation de cellules élémentaires PCFC opérant dans le domaine de température 400-600 C)

    No full text
    Ce travail s'inscrit dans le cadre du développement des piles à combustible à céramique conductrice protonique (PCFC) opérant dans le domaine de température 400 600 C et concerne l'optimisation des composants de la cellule élémentaire. L'optimisation du matériau électrolytique consiste à rechercher le meilleur compromis entre stabilité chimique et conductivité élevée. Le matériau BaCe0.9Y0.1O2.95, synthétisé par la voie flash combustion, présente la conductivité protonique la plus élevée (10-2 S.cm-1 à 600 C) mais réagit fortement avec le CO2. La substitution partielle du cérium par le zirconium (BCZY) et le niobium (BCYN30) a conduit à une amélioration significative de la stabilité chimique tout en conservant une conductivité de l'ordre de 5 . 10-3 S.cm-1 à 600 C. En ce qui concerne les électrodes, l'enjeu est de développer des matériaux présentant une conductivité électronique élevée, une porosité suffisamment importante et une bonne tenue mécanique. L'approche a consisté en la mise au point de stratégies d'élaboration (synthèse en une étape, utilisation de porogène) permettant le contrôle de la microstructure des matériaux anodiques afin de minimiser les résistances spécifiques surfaciques (ASR). Comme dans le cas des SOFC, les matériaux cathodiques sont conducteurs mixtes ionique-électronique (MIEC). Le développement de cathodes composites MIEC-électrolyte a permis de réduire significativement les ASR. Les tests en pile de cellules élémentaires PCFC ont révélé que les performances dépendaient essentiellement de la nature et de l'épaisseur du matériau électrolytique et de la mise en œuvre de matériaux d'électrode de morphologie contrôlée et architecturée. L'optimisation des assemblages a permis d'accroître sensiblement les performances (156 mW.cm-2 à 600 C).Materials components for a Proton Conducting Fuel Cell (PCFC) operating in the 400 600 C temperature range have been optimised. Electrolyte material optimisation involved finding the best compromise between chemical stability and conductivity. BaCe0.9Y0.1O2.95, synthesised by flash combustion, exhibits the highest protonic conductivity (10-2 S.cm-1 at 600 C) but reacts strongly with CO2. Partial substitution of cerium by zirconium (BCZY) and niobium (BCYN30) led to a significant improvement of the chemical stability without drastic effect on the conductivity (5 . 10-3 S.cm-1 at 600 C). The aim for the electrodes is to develop materials which exhibit high electronic conductivity, sufficient degree of porosity and good mechanical properties. The approach comprised the development of elaboration strategies (one-step synthesis, use of porogen) that allow the control of microstructure in order to minimize area specific resistances (ASR) at the anode. As in the case of SOFCs, cathodic materials are mixed ionic-electronic conductors (MIEC). Development of composite cathodes MIEC-electrolyte led to a significant reduction of ASR. PCFC single cell tests showed that performance was mostly dependent on electrolyte thickness and composition, and on the characteristics of nanostructured electrodes with controlled architecture and porosity. Optimisation of assemblies led to fuel cells performances of 156 mW.cm-2 at 600 C.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Flash combustion synthesis and characterisation of nanosized proton conducting yttria-doped barium cerate

    No full text
    International audienc
    corecore