45 research outputs found

    Slope parameters determined from CREX and PREX2

    Full text link
    [Background] Very lately, the CREX group presents a skin value ΔRskin48(CREX)=0.121±0.026 (exp)±0.024 (model)=0.071∼0.171\Delta R_{\rm skin}^{48}({\rm CREX}) =0.121 \pm 0.026\ {\rm (exp)} \pm 0.024\ {\rm (model)}=0.071\sim 0.171~fm. Meanwhile, the PREX group reported a skin value ΔRskin208(PREX2)=0.283±0.071=0.212∼0.354\Delta R_{\rm skin}^{208}({\rm PREX2}) = 0.283\pm 0.071=0.212 \sim 0.354~fm. In our previous paper, we determined both the LL--ΔRskin48\Delta R_{\rm skin}^{48} relation and the LL--ΔRskin208\Delta R_{\rm skin}^{208} one, using 206 EoSs, where LL is a slope parameter. [Purpose] We determine LL from ΔRskin48(CREX)\Delta R_{\rm skin}^{48}({\rm CREX}) and ΔRskin208(PREX2)\Delta R_{\rm skin}^{208}({\rm PREX2}) , using 207 EoSs. [Results] The ΔRskin48(CREX)\Delta R_{\rm skin}^{48}({\rm CREX}) yields L(CREX)=0∼51L({\rm CREX})=0 \sim 51~MeV and the ΔRskin208(PREX2)\Delta R_{\rm skin}^{208}({\rm PREX2}) does L(PREX2)=76∼165L({\rm PREX2})=76 \sim 165~MeV. [Conclusion] There is no overlap between L(CREX)L({\rm CREX}) and L(PREX2)L({\rm PREX2}). This is a big problem to be solved

    Determination of matter radius and neutron-skin thickness of 60,62,64^{60,62,64}Ni from reaction cross section of proton scattering on 60,62,64^{60,62,64}Ni targets

    Full text link
    In our previous work, we determined matter radii rm(exp)r_{\rm m}({\rm exp}) and neutron-skin thickness rskin(exp)r_{\rm skin}({\rm exp}) from reaction cross sections σR(exp)\sigma_{\rm R}({\rm exp}) of proton scattering on 208^{208}Pb, 58^{58}Ni, 40,48^{40,48}Ca, 12^{12}C targets, using the chiral (Kyushu) gg-matrix folding model with the densities calculated with Gogny-D1S-HFB (D1S-GHFB) with angular momentum projection (AMP). The resultant rskin(exp)r_{\rm skin}({\rm exp}) agree with the PREX2 and CREX values. As for 58^{58}Ni, our value is consistent with one determined from the differential cross section for 58^{58}Ni+4^{4}He scattering. As for p+60,62,64^{60,62,64}N scattering, σR(exp)\sigma_{\rm R}({\rm exp}) are available as a function of incident energies EinE_{\rm in}, where Ein=22.8∼65.5E_{\rm in}=22.8 \sim 65.5~MeV for 60^{60}Ni, Ein=40,60.8E_{\rm in}=40,60.8~MeV for 62^{62}Ni, Ein=40,60.8E_{\rm in}=40, 60.8~MeV for 64^{64}Ni. Our aim is to determine matter radii rm(exp)r_{\rm m}({\rm exp}) for 60,62,64^{60,62,64}Ni from the σR(exp)\sigma_{\rm R}({\rm exp}). Our method is the Kyushu gg-matrix folding model with the densities scaled from D1S-GHFB+AMP densities, Our skin values are rskin(exp)=0.076±0.019, 0.106±0.192, 0.162±0.176r_{\rm skin}({\rm exp})=0.076 \pm 0.019,~0.106 \pm 0.192,~0.162 \pm 0.176~fm, and rm(exp)=3.759±0.011, 3.811±0.107, 3.864±0.101r_{\rm m}({\rm exp})=3.759 \pm 0.011,~3.811 \pm 0.107,~3.864 \pm 0.101~fm for 60,62,64^{60,62,64}Ni, respectively

    12^{12}C+12^{12}C scattering as the reference system for reaction cross section

    Full text link
    In our previous paper, we tested the chiral (Kyushu) folding model for 12^{12}C+12^{12}C scattering, since the profile function in the Glauber mode is constructed for the system. We found that the folding model is reliable for reaction cross sections σR\sigma_{\rm R} in 30 \lsim E_{\rm lab} \lsim 100 ~MeV and 250 \lsim E_{\rm lab} \lsim 400 ~MeV. Accurate data are available for 12^{12}C scattering on 9^{9}Be, 12^{12}C, 27^{27}Al targets in 30 \lsim E_{\rm lab} \lsim 400 ~MeV. We determine matter radius rm(exp)r_{m}({\rm exp}) of 12^{12}C from the accurate σR(exp)\sigma_{\rm R}({\rm exp}), using the Kyushu gg-matrix folding model. Our result is rm12(exp)=2.352±0.013r_{\rm m}^{12}({\rm exp}) =2.352 \pm 0.013~fm for 12^{12}C. The model is applied for the accurate data on 12^{12}C+27^{27}Al scattering, and yields rm(exp)=2.936±0.012r_{\rm m}({\rm exp}) =2.936 \pm 0.012~fm for 27^{27}Al. Our conclusion is that rm(exp)=2.352±0.013r_{\rm m}({\rm exp}) =2.352 \pm 0.013~fm agrees with rm(exp)=2.35±0.02r_{\rm m}({\rm exp}) =2.35 \pm 0.02~fm determined from interaction cross sections by Tanihata {\it et. al.}.Comment: arXiv admin note: text overlap with arXiv:2306.0960

    Neutron skin thickness of 116,118,120,122,124^{116,118,120,122,124}Sn determined from reaction cross sections of proton scattering

    Full text link
    The cross sections of SDR in the Sb isotopes have been measured. Within the model used, the neutron-skin thicknesses rskin(exp)r_{\rm skin}({\rm exp}) deduced 0.12±0.060.12 \pm 0.06fm for 116^{116}Sn, 0.13±0.060.13 \pm 0.06fm for 118^{118}Sn, 0.18±0.070.18 \pm 0.07fm for 120^{120}Sn, 0.22±0.070.22 \pm 0.07fm for 122^{122}Sn, 0.19±0.070.19 \pm 0.07fm for 124^{124}Sn. We tested the chiral (Kyushu) gg-matrix folding model for 12^{12}C+12^{12}C scattering, and found that the Kyushu gg-matrix folding model is reliable for reaction cross sections σR\sigma_{\rm R} in 30<Ein<10030 < E_{\rm in} < 100 MeV and 250<Ein<400250 < E_{\rm in} < 400MeV. We determine neutron skin thickness rskin(exp)r_{\rm skin}({\rm exp}), using measured σR\sigma_{\rm R} of 4^{4}He+116,120,224^{116,120,224}Sn scattering. The results are rskin(exp)=0.242±0.140r_{\rm skin}({\rm exp})=0.242 \pm 0.140fm for 116^{116}Sn, rskin(exp)=0.377±0.140r_{\rm skin}({\rm exp})=0.377 \pm 0.140fm for 120^{120}Sn, rskin(exp)=0.180±0.142r_{\rm skin}({\rm exp})=0.180 \pm 0.142fm for 124^{124}Sn. The σR\sigma_{\rm R} are available for proton scattering on 116,118,120,122,124^{116,118,120,122,124}Sn with high accuracy. Our aim is to determine rskin(exp)r_{\rm skin}({\rm exp}) for 116,118,120,122,124^{116,118,120,122,124}Sn with small errors by using the Kyushu gg-matrix folding model. Our model is the folding model with the densities scaled from the D1S-GHFB+AMP neutron density. The proton radii of D1S-GHFB+AMP agree with those calculated with the isotope shift method based on the electron scattering. We then scale the neutron densities so as to reproduce the σR(exp)\sigma_{\rm R}({\rm exp}). In 30<Ein<6530 < E_{\rm in} < 65MeV, we determine rskin(exp)r_{\rm skin}({\rm exp}) from measured σR\sigma_{\rm R}. The values are rskin(exp)=0.118±0.021r_{\rm skin}({\rm exp})=0.118 \pm 0.021~fm for 116^{116}Sn, 0.112±0.0210.112 \pm 0.021fm for 118^{118}Sn, 0.124±0.0210.124 \pm 0.021fm for 120^{120}Sn, 0.156±0.0220.156 \pm 0.022fm for 124^{124}Sn. As for 122^{122}Sn, the skin value in 30<Ein<5030 < E_{\rm in} < 50MeV is 0.122±0.0240.122 \pm 0.024fm. Our results are consistent with the previous values.Comment: arXiv admin note: text overlap with arXiv:2211.1668
    corecore