2,824 research outputs found

    Transport in Almost Integrable Models: Perturbed Heisenberg Chains

    Full text link
    The heat conductivity kappa(T) of integrable models, like the one-dimensional spin-1/2 nearest-neighbor Heisenberg model, is infinite even at finite temperatures as a consequence of the conservation laws associated with integrability. Small perturbations lead to finite but large transport coefficients which we calculate perturbatively using exact diagonalization and moment expansions. We show that there are two different classes of perturbations. While an interchain coupling of strength J_perp leads to kappa(T) propto 1/J_perp^2 as expected from simple golden-rule arguments, we obtain a much larger kappa(T) propto 1/J'^4 for a weak next-nearest neighbor interaction J'. This can be explained by a new approximate conservation law of the J-J' Heisenberg chain.Comment: 4 pages, several minor modifications, title change

    On Equivalence of Critical Collapse of Non-Abelian Fields

    Get PDF
    We continue our study of the gravitational collapse of spherically symmetric skyrmions. For certain families of initial data, we find the discretely self-similar Type II critical transition characterized by the mass scaling exponent γ0.20\gamma \approx 0.20 and the echoing period Δ0.74\Delta \approx 0.74. We argue that the coincidence of these critical exponents with those found previously in the Einstein-Yang-Mills model is not accidental but, in fact, the two models belong to the same universality class.Comment: 7 pages, REVTex, 2 figures included, accepted for publication in Physical Review

    Variation of the glass transition temperature with rigidity and chemical composition

    Full text link
    The effects of flexibility and chemical composition in the variation of the glass transition temperature are obtained by using the Lindemann criteria, that relates melting temperature with atomic vibrations. Using this criteria and that floppy modes at low frequencies enhance in a considerable way the average cuadratic displacement, we show that the consequence is a modified glass transition temperature. This approach allows to obtain in a simple way the empirically modified Gibbs-DiMarzio law, which has been widely used in chalcogenide glasses to fit the changes in the glass transition temperature with the chemical composition . The method predicts that the constant that appears in the law depends upon the ratio of two characteristic frequencies (or temperatures). Then, the constant for the Se-Ge-As glass is estimated by using the experimental density of vibrational states, and the result shows a very good agreement with the experimental fit from glass transition temperature variation

    The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity

    Full text link
    We analyze a detailed model of a Bose-Einstein condensate trapped in a ring optical resonator and contrast its classical and quantum properties to those of a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light fields and three matter field modes leads to important differences between the two situations. Specifically, we identify an experimentally realizable region where the system's behavior differs strongly from that of a BEC in a Fabry-P\'{e}rot cavity, and also where quantum corrections become significant. The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum fluctuations have a major impact on the system's dynamics.Comment: 11 pages, 11 figures, submitted to PR

    Quantum integrability and nonintegrability in the spin-boson model

    Get PDF
    We study the spectral properties of a spin-boson Hamiltonian that depends on two continuous parameters 0Λ<0\leq\Lambda<\infty (interaction strength) and 0απ/20\leq\alpha\leq\pi/2 (integrability switch). In the classical limit this system has two distinct integrable regimes, α=0\alpha=0 and α=π/2\alpha=\pi/2. For each integrable regime we can express the quantum Hamiltonian as a function of two action operators. Their eigenvalues (multiples of \hbar) are the natural quantum numbers for the complete level spectrum. This functional dependence cannot be extended into the nonintegrable regime (0<α<π/2)(0<\alpha<\pi/2). Here level crossings are prohibited and the level spectrum is naturally described by a single (energy sorting) quantum number. In consequence, the tracking of individual eigenstates along closed paths through both regimes leads to conflicting assignments of quantum numbers. This effect is a useful and reliable indicator of quantum chaos -- a diagnostic tool that is independent of any level-statistical analysis

    Existence and homogenization of the Rayleigh-B\'enard problem

    Full text link
    The Navier-Stokes equation driven by heat conduction is studied. As a prototype we consider Rayleigh-B\'enard convection, in the Boussinesq approximation. Under a large aspect ratio assumption, which is the case in Rayleigh-B\'enard experiments with Prandtl number close to one, we prove the existence of a global strong solution to the 3D Navier-Stokes equation coupled with a heat equation, and the existence of a maximal B-attractor. A rigorous two-scale limit is obtained by homogenization theory. The mean velocity field is obtained by averaging the two-scale limit over the unit torus in the local variable

    Energy landscape and rigidity

    Full text link
    The effects of floppy modes in the thermodynamical properties of a system are studied. From thermodynamical arguments, we deduce that floppy modes are not at zero frequency and thus a modified Debye model is used to take into account this effect. The model predicts a deviation from the Debye law at low temperatures. Then, the connection between the topography of the energy landscape, the topology of the phase space and the rigidity of a glass is explored. As a result, we relate the number of constraints and floppy modes with the statistics of the landscape. We apply these ideas to a simple model for which we provide an approximate expression for the number of energy basins as a function of the rigidity. This allows to understand certains features of the glass transition, like the jump in the specific heat or the reversible window observed in chalcogenide glasses.Comment: 1 text+3 eps figure

    Dispersion and collapse of wave maps

    Full text link
    We study numerically the Cauchy problem for equivariant wave maps from 3+1 Minkowski spacetime into the 3-sphere. On the basis of numerical evidence combined with stability analysis of self-similar solutions we formulate two conjectures. The first conjecture states that singularities which are produced in the evolution of sufficiently large initial data are approached in a universal manner given by the profile of a stable self-similar solution. The second conjecture states that the codimension-one stable manifold of a self-similar solution with exactly one instability determines the threshold of singularity formation for a large class of initial data. Our results can be considered as a toy-model for some aspects of the critical behavior in formation of black holes.Comment: 14 pages, Latex, 9 eps figures included, typos correcte

    Formation of singularities for equivariant 2+1 dimensional wave maps into the two-sphere

    Full text link
    In this paper we report on numerical studies of the Cauchy problem for equivariant wave maps from 2+1 dimensional Minkowski spacetime into the two-sphere. Our results provide strong evidence for the conjecture that large energy initial data develop singularities in finite time and that singularity formation has the universal form of adiabatic shrinking of the degree-one harmonic map from R2\mathbb{R}^2 into S2S^2.Comment: 14 pages, 5 figures, final version to be published in Nonlinearit
    corecore