74 research outputs found

    Mesoglycan connects Syndecan-4 and VEGFR2 through Annexin A1 and formyl peptide receptors to promote angiogenesis in vitro.

    Get PDF
    Mesoglycan is a mixture of glycosaminoglycans (GAG) with fibrinolytic effects and the potential to enhance skin wound repair. Here, we have used endothelial cells isolated from Wild Type (WT) and Syndecan-4 null (Sdc4-/-) C57BL/6 mice to demonstrate that mesoglycan promotes cell motility and in vitro angiogenesis acting on the co-receptor Syndecan-4 (SDC4). This latter is known to participate in the formation and release of extracellular vesicles (EVs). We characterized EVs released by HUVECs and assessed their effect on angiogenesis. Particularly, we focused on Annexin A1 (ANXA1) containing EVs, since they may contribute to tube formation via interactions with Formyl peptide receptors (FPRs). In our model, the bond ANXA1-FPRs stimulates the release of vascular endothelial growth factor (VEGF-A) that interacts with vascular endothelial receptor-2 (VEGFR2) and activates the pathway enhancing cell motility in an autocrine manner, as shown by Wound-Healing/invasion assays, and the induction of Endothelial to Mesenchymal Transition (EndMT). Thus, we have shown for the first time that mesoglycan exerts its pro-angiogenic effects in the healing process triggering the activation of the three interconnected molecular axis: mesoglycan-SDC4, EVs-ANXA1-FPRs and VEGF-A-VEGFR2

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression

    Full text link

    Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    No full text
    Phuc Van Pham1, Ngoc Bich Vu1, Thuy Thanh Duong1, Tam Thanh Nguyen1, Nhung Hai Truong1, Nhan Lu Chinh Phan1, Tue Gia Vuong1, Viet Quoc Pham1, Hoang Minh Nguyen1, Kha The Nguyen1, Nhung Thi Nguyen1, Khue Gia Nguyen1, Lam Tan Khat1, Dong Van Le2, Kiet Dinh Truong1, Ngoc Kim Phan11Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City, 2Military Medical University, Ha Noi, VietnamBackground: Breast cancer stem cells with a CD44+CD24- phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24- breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment.Methods: Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24- cells. To track CD44+CD24- cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control.Results: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group.Conclusion: These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.Keywords: breast cancer, breast cancer stem cells, CD44, doxorubicin, gene therap

    Hyperinflammatory syndrome, natural killer cell function, and genetic polymorphisms in the pathogenesis of severe dengue

    No full text
    Background Severe dengue, characterized by shock and organ dysfunction, is driven by an excessive host immune response. We investigated the role of hyperinflammation in dengue pathogenesis. Methods Patients recruited into an observational study were divided into 3 plasma leak severity grades. Hyperinflammatory biomarkers were measured at 4 time points. Frequencies, activation, and cytotoxic potential of natural killer (NK) cells were analyzed by flow cytometry. RNA was extracted from sorted CD56+ NK cells and libraries were prepared using SMART-Seq and sequenced using HiSeq3000 (Illumina). Results Sixty-nine patients were included (grade 0, 42 patients; grade 1, 19 patients; grade 2, 8 patients). Patients with grade 2 leakage had higher biomarkers than grade 0, including higher peak ferritin levels (83.3% vs 45.2%) and H-scores (median, 148.5 vs 105.5). NK cells from grade 2 patients exhibited decreased expression of perforin and granzyme B and activation markers. RNA sequencing revealed 3 single-nucleotide polymorphisms in NK cell functional genes associated with more severe leakage—NK cell lectin-like receptor K1 gene (KLRK1) and perforin 1 (PRF1). Conclusions Features of hyperinflammation are associated with dengue severity, including higher biomarkers, impaired NK cell function, and polymorphisms in NK cell cytolytic function genes (KLRK1 and PRF1). Trials of immunomodulatory therapy in these patients is now warranted
    corecore