503 research outputs found

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    On Supersymmetric D7-branes in the Warped Deformed Conifold

    Get PDF
    We study the supersymmetric properties of D7-branes in the warped deformed conifold. We consider the κ\kappa-symmetry conditions on D7-branes in this specific warped background, taking into account the background NS-NS 2-form flux. While any holomorphic embedding defines a supersymmetric D7-brane in the absence of background H-flux, most of the D7-brane embeddings considered in the literature do not preserve supersymmetry for the warped deformed conifold without also including brane worldvolume flux. For the simplest such embedding, we construct numerically the worldvolume fluxnecessary to restore supersymmetry. We also comment on the dual field theory descriptions in terms of cascading N=1 supersymmetric gauge theories with flavors. Finally, we discuss some possible applications of our results to moduli stabilization and vacuum energy uplifting, gauge/gravity duality, and string inflationary model building.Comment: 37 pages, 2 figures, v3:many clarifications and improvements to susy restoring flu

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Evaluating the SERCA2 and VEGF mRNAs as Potential Molecular Biomarkers of the Onset and Progression in Huntington's Disease

    Get PDF
    Abnormalities of intracellular Ca2+ homeostasis and signalling as well as the down-regulation of neurotrophic factors in several areas of the central nervous system and in peripheral tissues are hallmarks of Huntington\u2019s disease (HD). As there is no therapy for this hereditary, neurodegenerative fatal disease, further effort should be made to slow the progression of neurodegeneration in patients through the definition of early therapeutic interventions. For this purpose, molecular biomarker(s) for monitoring disease onset and/or progression and response to treatment need to be identified. In the attempt to contribute to the research of peripheral candidate biomarkers in HD, we adopted a multiplex real-time PCR approach to analyse the mRNA level of targeted genes involved in the control of cellular calcium homeostasis and in neuroprotection. For this purpose we recruited a total of 110 subjects possessing the HD mutation at different clinical stages of the disease and 54 sex- and agematched controls. This study provides evidence of reduced transcript levels of sarco-endoplasmic reticulum-associated ATP2A2 calcium pump (SERCA2) and vascular endothelial growth factor (VEGF) in peripheral blood mononuclear cells (PBMCs) of manifest and premanifest HD subjects. Our results provide a potentially new candidate molecular biomarker for monitoring the progression of this disease and contribute to understanding some early events that might have a role in triggering cellular dysfunctions in HD

    High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.

    Get PDF
    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations

    Hyperglycemic Myocardial Damage Is Mediated by Proinflammatory Cytokine: Macrophage Migration Inhibitory Factor

    Get PDF
    Diabetes has been regarded as an inflammatory condition which is associated with left ventricular diastolic dysfunction (LVDD). The purpose of this study was to examine the expression levels of macrophage migration inhibitory factor (MIF) and G protein-coupled receptor kinase 2 (GRK2) in patients with early diabetic cardiomyopathy, and to investigate the mechanisms involved in MIF expression and GRK2 activation.83 patients in the age range of 30-64 years with type 2 diabetes and 30 matched healthy men were recruited. Left ventricular diastolic function was evaluated by cardiac Doppler echocardiography. Plasma MIF levels were determined by ELISA. To confirm the clinical observation, we also studied MIF expression in prediabetic rats with impaired glucose tolerance (IGT) and relationship between MIF and GRK2 expression in H9C2 cardiomyoblasts exposed to high glucose.Compared with healthy subjects, patients with diabetes have significantly increased levels of plasma MIF which was further increased in diabetic patients with Left ventricular diastolic dysfunction (LVDD). The increased plasma MIF levels in diabetic patients correlated with plasma glucose, glycosylated hemoglobin and urine albumin levels. We observed a significant number of TUNEL-positive cells in the myocardium of IGT-rats but not in the control rats. Moreover, we found higher MIF expression in the heart of IGT with cardiac dysfunction compared to that of the controls. In H9C2 cardiomyoblast cells, MIF and GRK2 expression was significantly increased in a glucose concentration-dependant manner. Furthermore, GRK2 expression was abolished by siRNA knockdown of MIF and by the inhibition of CXCR4 in H9C2 cells.Our findings indicate that hyperglycemia is a causal factor for increased levels of pro-inflammatory cytokine MIF which plays a role in the development of cardiomyopathy occurring in patients with type 2 diabetes. The elevated levels of MIF are associated with cardiac dysfunction in diabetic patients, and the MIF effects are mediated by GRK2

    Differential Gene Expression in the EphA4 Knockout Spinal Cord and Analysis of the Inflammatory Response Following Spinal Cord Injury

    Get PDF
    Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips™. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury
    corecore