220 research outputs found

    Risks associated with wastewater reuse in agriculture: investigating the effects of contaminants in soil, plants, and insects

    Get PDF
    Rapid urbanization has heightened the urgency of the necessity for sustainable water management in agriculture. This review focuses on the impacts of using reused wastewater in agricultural practices, specifically highlighting the nutrient benefits and consequences of pollutants on important environmental elements. It investigates the impact of contaminants on agricultural ecosystems by assessing the soil composition and nutrient equilibrium. This research also examines the impact of pollution exposure on plants and insects, elucidating the behavioural adaptations and their broader ecological consequences in agricultural environments. Eventually, a comprehensive analysis was conducted to consolidate these findings, emphasizing the challenges and significance of implementing sustainable practices. This study highlights the necessity of addressing the health and environmental concerns associated with the agricultural reuse of wastewater, while also giving valuable information to guide future regulations

    The future of ethics in AI: challenges and opportunities

    Get PDF
    Artificial Intelligence (AI) systems that are able to learn and reason like humans are now widely used in a large number of real-world applications. Their performance has dramatically increased the degree to which we are able to address previously inaccessible tasks. However, the debate around such systems is now pivoting towards their non-functional properties and their impact on society as a whole. In this Special Issue, we collected several works that would trigger the discussion about a more sustainable AI developmental framework that encompasses a set of principles at the crossroads of AI, Ethics, Philosophy, and Sociology. As the range of AI capabilities expands, so does our awareness of the ethical issues related to the design, development, deployment, and use of AI systems or their application for the social good. The promise for positive change that AI represents has been challenged by several reports on ethically questionable uses of AI in contexts as varied as healthcare, education, law enforcement, recruitment, risk assessment, and more

    Plastic responses of some life history traits and cellular components of body size in Aphidius ervi as related to the age of its host Acyrthosiphon pisum

    Get PDF
    Phenotypic plasticity of wing size and shape has been evaluated in Aphidius ervi developing in its host, Acyrthosiphon pisum, parasitized at seven different ages. The parasitoid wing size was used as an estimator of both whole body size and its cellular composition. No size difference was observed in A. ervi adults emerged from aphids 1, 2 or 3 days old at parasitization. Body size then increased in A. ervi emerged from hosts older at parasitization. Body size values as related to host age at parasitization were achieved by adjusting developmental time, developmental rate or both. Parasitoids of similar size, but developed in hosts parasitized at different ages, had different wing cellular composition, while the increase of parasitoid body size was related to a general increase in both cell area and cell number. These results seem to suggest a trade-off between adult size and developmental time, at least for parasitoids developed at the two extremes of host ages at parasitization, and that A. ervi can reach the same adult size via different trajectories, adapting its ontogenetic processes. Wing shape was typical for all the different parasitoid classes considered and differed strongly between males and females, independent of their size. Parasitoid males (haploids) and females (diploids) did not differ in either cell area or cell number, suggesting a possible sex-determined dosage compensation in somatic tissue endoreplication

    Prey abundance and intraguild predation between Adalia bipunctata (Coleoptera: Coccinellidae) and Macrolophus pygmaeus (Hemiptera: Miridae)

    Get PDF
    Macrolophus pygmaeus Rambur (Hemiptera: Miridae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae) are two predatory insects commonly used as biological control agents. In order to determine the incidence with which both species attack and eat each other [Intraguild predation (IGP)], the direction and symmetry of the interaction between A. bipunctata and M. pygmaeus were characterized. In addition, whether the intensity of IGP between these two predators increased when the number of extraguild prey Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) decreased, was also determined. Unidirectional sensu stricto IGP between A. bipunctata and M. pygmaeus was recorded: when IGP occurred, A. bipunctata was always the IG predator that killed and ate M. pygmaeus, the IG prey. However, the intensity of IGP was a function of the abundance of the extraguild prey, A. pisum, since IGP increased when the number of extraguild prey decreased. These results are discussed in terms of theoretical models that predict stability and the outcome of using natural enemies to control pests

    Optimization of UAV robust control using genetic algorithm

    Get PDF
    A hybrid methodology combining the use of a robust LQR servomechanism (RSLQR) and a genetic algorithm (GA) for the design of the flight control system (FCS) of a lightweight unmanned aerial vehicle is the subject of this paper. The objective is to develop a systematic design approach based on a proven technique that provides improved time response and robust steady-state performance of the control system, so as to reduce the burden of trial-and-error procedures. The design of the inner loops of the UAV autopilot is formulated as an optimization problem where the GA is used to determine the weights of the RSLQR synthesis. The process is aimed at maximizing a weighted sum of an appropriately defined multi-objective fitness function, evaluated through a series of nonlinear simulations, so as to fully engage the control system in complex maneuvers, such as combined changes in altitude and heading at different flight speeds. The performance of the proposed control design approach is evaluated using analytical tools for linear systems, software-in-the-loop simulations, and Monte Carlo campaigns. The comparison between the new controller and a classical FCS with internal PID loops on attitude angles for stability and control augmentation is analyzed and discussed using an accurate vehicle model with an extended Kalman filter for output reconstruction

    Metagenomic Analysis of Bacterial Community Structure and Dynamics of a Digestate and a More Stabilized Digestate-Derived Compost from Agricultural Waste

    Get PDF
    Recycling of different products and waste materials plays a crucial role in circular economy, where the anaerobic digestion (AD) constitutes an important pillar since it reuses nutrients in the form of organic fertilizers. Knowledge about the digestate and compost microbial community structure and its variations over time is important. The aim of the current study was to investigate the microbiome of a slurry cow digestate produced on a farm (ADG) and of a more stabilized digestate-derived compost (DdC) in order to ascertain their potential uses as organic amendments in agriculture. The results from this study, based on a partial fragment of 16S bacterial rRNA NGS sequencing, showed that there is a greater microbial diversity in the DdC originated from agricultural waste compared to the ADG. Overall, the existence of a higher microbial diversity in the DdC was confirmed by an elevated number (1115) of OTUs identified, compared with the ADG (494 OTUs identified). In the DdC, 74 bacterial orders and 125 families were identified, whereas 27 bacterial orders and 54 families were identified in the ADG. Shannon diversity and Chao1 richness indexes were higher in DdC samples compared to ADG ones (Shannon: 3.014 and 1.573, Chao1: 68 and 24.75; p< 0.001 in both cases). A possible association between the microbiome composition at different stages of composting process and the role that these microorganisms may have on the quality of the compost-like substrate and its future uses is also discussed

    Plastic responses of some life history traits and cellular components of body size in Aphidius ervi as related to the age of its host Acyrthosiphon pisum

    Get PDF
    Phenotypic plasticity of wing size and shape has been evaluated in Aphidius ervi developing in its host, Acyrthosiphon pisum, parasitized at seven different ages. The parasitoid wing size was used as an estimator of both whole body size and its cellular composition. No size difference was observed in A. ervi adults emerged from aphids 1, 2 or 3 days old at parasitization. Body size then increased in A. ervi emerged from hosts older at parasitization. Body size values as related to host age at parasitization were achieved by adjusting developmental time, developmental rate or both. Parasitoids of similar size, but developed in hosts parasitized at different ages, had different wing cellular composition, while the increase of parasitoid body size was related to a general increase in both cell area and cell number. These results seem to suggest a trade-off between adult size and developmental time, at least for parasitoids developed at the two extremes of host ages at parasitization, and that A. ervi can reach the same adult size via different trajectories, adapting its ontogenetic processes. Wing shape was typical for all the different parasitoid classes considered and differed strongly between males and females, independent of their size. Parasitoid males (haploids) and females (diploids) did not differ in either cell area or cell number, suggesting a possible sex-determined dosage compensation in somatic tissue endoreplication

    Transgenerational plasticity in aphids reared in a poor-resource environment

    Get PDF
    : The changing environmental conditions can affect insect biology over multiple generations and phenotypic plasticity is important for coping with these changes. Transgenerational plasticity occurs when the environment in which the parents developed influences the plastic response of the offspring phenotype. In the present study, the plastic effects of resource limitation on important life history traits such as body size, fecundity, survival, and resistance to starvation of the pea aphid Acyrthosiphon pisum were investigated over two generations. This study focused on understanding how resource limitation can determine an adaptive expression of maternal effects and transgenerational plasticity in fitness-related traits. Aphids showed phenotypic plasticity for the life history traits investigated, as they performed better when grown in an optimal environment than in a resource-poor one. Also, aphids had a poorer performance if their mothers were raised in a resource-poor environment. The effects of transgenerational plasticity were observed only in response to resistance to starvation, through increased survival in the offspring of the mother reared in a resource-poor environment, suggesting an evolutionary bet-hedging strategy. The results of this study showed that the effects of adaptive transgenerational plasticity may be partially masked in stressful environments, where developmental problems instead predominate. More information on the transgenerational response to resource limitation across generations can contribute to a better understanding of aphid biology
    • …
    corecore