80 research outputs found
NGS transcriptomic analysis uncovers the possible resistance mechanisms of olive to Spilocea oleagina leaf spot infection
Spilocea oleagina is a dangerous obligate fungal pathogen of olive, feared in the Mediterranean countries, causing Peacock's eye or leaf spot infection, which can lead to a serious yield loss of approximately 20% or higher depending on climatic conditions. Coping with this disease is much more problematic for organic farms. To date, knowledge on the genetic control of possible mechanisms of resistance/low susceptibility is quite limited. In this work, comparative transcriptomic analysis (RNA-seq) was conducted in leaf tissues of a low susceptible cultivar Koroneiki and a high susceptible cultivar Nocellara del Belice, both tested in the field using the NaOH test, considering two stages-"zero sign of disease" and "evident sign of infection". Cultivars showed a very large number of differentially expressed genes (DEGs) in both stages. 'Koroneiki' showed an extensive hormonal crosstalk, involving Abscisic acid (ABA) and ethylene synergistically acting with Jasmonate, with early signaling of the disease and remarkable defense responses against Spilocea through the over-expression of many resistance gene analogs or pathogenesis-related (PR) genes: non-specific lipid-transfer genes (nsLTPs), LRR receptor-like serine/threonine-protein kinase genes, GDSL esterase lipase, defensin Ec-AMP-D2-like, pathogenesis-related leaf protein 6-like, Thaumatin-like gene, Mildew resistance Locus O (MLO) gene, glycine-rich protein (GRP), MADS-box genes, STH-21-like, endochitinases, glucan endo-1,3-beta-glucosidases, and finally, many proteinases. Numerous genes involved in cell wall biogenesis, remodeling, and cell wall-based defense, including lignin synthesis, were also upregulated in the resistant cultivar, indicating the possible role of wall composition in disease resistance. It was remarkable that many transcription factors (TS), some of which involved in Induced Systemic Resistance (ISR), as well as some also involved in abiotic stress response, were found to be uniquely expressed in 'Koroneiki', while 'Nocellara del Belice' was lacking an effective system of defense, expressing genes that overlap with wounding responses, and, to a minor extent, genes related to phenylpropanoid and terpenoid pathways. Only a Thaumatin-like gene was found in both cultivars showing a similar expression. In this work, the genetic factors and mechanism underlying the putative resistance trait against this fungal pathogen were unraveled for the first time and possible target genes for breeding resistant olive genotypes were found
Recovery and genotyping ancient Sicilian monumental olive trees
The long-lived and evergreen olive tree dominates the Mediterranean landscape, representing an agroecological and cultural symbol and a genetic heritage of inestimable value. Sicily, for historical, geographical, and cultural reasons, has a very rich and distinctive olive germplasm. In this work, a large survey was conducted to discover, collect, and characterize the genetic diversity of centennial monumental olive trees from historical sites, such as the Greek Temple Valley (Agrigento), ancient gardens, or farmland present in the western part of the island. Trees were chosen based on their height, trunk, stump size, and presumed age; particularly, only olive trees with an age estimated at more than 400 years old were taken into consideration. For the morphological characterization, the leaf, fruit, and endocarp traits were analyzed. For the molecular characterization, 11 polymorphic microsatellite markers largely used for fingerprinting analysis were used. Reference cultivars were included in the analysis for comparison. Nuclear DNA was extracted from different parts of the plant (young leaves of shoots taken from the canopy and young leaves taken from suckers, which arose from the basal part of the tree) to check if the trees were grafted and to explore their diversity. Most of the monumental trees have been grafted at least one time during their long life, and some genotypes showed unique genetic profiles combined with peculiar phenotypic traits. Suckers (rootstock of the trees) showed a strict genetic relationship with an ancient monumental oleaster tree, also included in the study. βPatriarchβ (original mother plants) trees of local cultivars were also identified. This research revealed a high level of the still unexplored genetic diversity of the Sicilian olive germplasm and highlighted its importance as a gene reservoir, which could support new breeding programs for the evaluation and possible selection of traits linked to putative resilience to abiotic and biotic stresses (particularly Xylella fastidiosa subsp. pauca ST53 or soil- borne diseases or insects). The results will be useful for improving the conservation process, enriching existing collections of olive genetic resources, and supporting on-farm conservation projects
Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression
PURPOSE: Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM) with a 10% annual risk of progression. Various prognostic models exist for risk stratification; however, those are based on solely clinical metrics. The discovery of genomic alterations that underlie disease progression to MM could improve current risk models. METHODS: We used next-generation sequencing to study 214 patients with SMM. We performed whole-exome sequencing on 166 tumors, including 5 with serial samples, and deep targeted sequencing on 48 tumors. RESULTS: We observed that most of the genetic alterations necessary for progression have already been acquired by the diagnosis of SMM. Particularly, we found that alterations of the mitogen-activated protein kinase pathway (KRAS and NRAS single nucleotide variants [SNVs]), the DNA repair pathway (deletion 17p, TP53, and ATM SNVs), and MYC (translocations or copy number variations) were all independent risk factors of progression after accounting for clinical risk staging. We validated these findings in an external SMM cohort by showing that patients who have any of these three features have a higher risk of progressing to MM. Moreover, APOBEC associated mutations were enriched in patients who progressed and were associated with a shorter time to progression in our cohort. CONCLUSION: SMM is a genetically mature entity whereby most driver genetic alterations have already occurred, which suggests the existence of a right-skewed model of genetic evolution from monoclonal gammopathy of undetermined significance to MM. We identified and externally validated genomic predictors of progression that could distinguish patients at high risk of progression to MM and, thus, improve on the precision of current clinical models
ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΉ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΠΊΡΡΡ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ (Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ 2017)
ΠΠ½Π½ΠΎΡΠ°ΡΠΈΡ Π²ΡΠΏΡΡΠΊΠ½ΠΎΠΉ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΡΠ»ΠΎΠ² ΠΠΈΠΊΠΈΡΠ° Π‘Π΅ΡΠ³Π΅Π΅Π²ΠΈΡ Β«ΠΠΠΠΠ£ΠΠΠ ΠΠΠΠ«Π ΠΠ£ΠΠ«ΠΠΠΠ¬ΠΠ«Π ΠΠΠΠΠ£Π Π‘ Π Π€ΠΠ ΠΠΠ ΠΠΠΠΠΠ ΠΠΠΠΠΠ Π‘Π’Π ΠΠΠ« ΠΠ ΠΠΠΠΠΠΠΠ― (ΠΠ ΠΠ ΠΠΠΠ Π ΠΠΠ ΠΠΠΠΠΠΠΠ―-2017)Β» Π. ΡΡΠΊ. - ΠΡΠΊΠΎΠ²Π° ΠΠ»Π΅Π½Π° ΠΠ»Π°Π΄ΠΈΠΌΠΈΡΠΎΠ²Π½Π°, Π΄ΠΎΠΊΡΠΎΡ ΡΠΈΠ»ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΡΠΊ, Π΄ΠΎΡΠ΅Π½Ρ ΠΠ°ΡΠ΅Π΄ΡΠ° ΡΠ²ΡΠ·Π΅ΠΉ Ρ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΡΡ ΠΡΠ½Π°Ρ ΡΠΎΡΠΌΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ: ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΉ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΠΊΡΡΡ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠ΅ ΠΌΠ°ΡΡΡΠ°Π±Π½ΠΎΠ΅ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎΠ΅ Π²ΡΡΠΎΠΊΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΠ΅ ΡΠ΅Π»Π΅Π²ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈ ΠΌΠ΅Π΄ΠΈΠ°-ΡΠΎΠ±ΡΡΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ . Π Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎ Π°ΠΊΡΠ΅Π½ΡΠΈΡΡΠ΅Ρ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π°ΡΠ΄ΠΈΡΠΎΡΠΈΠΈ Π½Π° Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ-ΠΊΡΠ»ΡΡΡΡΠ½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ
ΡΡΡΠ°Π½Ρ-ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΎΡΠ° ΠΊΠΎΠ½ΠΊΡΡΡΠ°, ΡΠΎΡΠΌΠΈΡΡΠ΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΡΠΎΠΊΠΈ ΠΈ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, ΠΏΠΎΠ±Π΅Π΄Π° ΡΡΡΠ°Π½Ρ-ΡΡΠ°ΡΡΠ½ΠΈΡΡ ΠΊΠΎΠ½ΠΊΡΡΡΠ° ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ Π·Π°ΡΠ°ΡΡΡΡ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΠΈΠ΄Π΅ΠΎΠ»ΠΎΠ³ΠΎ-ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π²Π΅ΠΊΡΠΎΡ ΠΠ²ΡΠΎΠΏΡ ΠΈ ΠΏΠΎ ΡΡΡΠΈ Π΄Π΅Π»Π° Π²ΡΠΏΠΎΠ»Π½ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ PR ΡΡΡΠ°Π½Ρ-ΠΏΠΎΠ±Π΅Π΄ΠΈΡΠ΅Π»Ρ ΠΈ ΡΡΡΠ°Π½Ρ-Ρ
ΠΎΠ·ΡΠΉΠΊΠΈ ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π°Π½Π°Π»ΠΈΠ· ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ
Π½Π° ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΠΈ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠ²Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΈ Π²ΠΎΡΡΡΠ΅Π±ΠΎΠ²Π°Π½Π½ΡΠΌ Π΄Π»Ρ ΡΠΎΠ±ΡΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΈ ΡΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ PR ΠΠ±ΡΠ΅ΠΊΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΠΊΡΡΡΠ° (Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ Π² ΠΠΈΠ΅Π²Π΅ Π² 2017 Π³.). ΠΡΠ΅Π΄ΠΌΠ΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΡΡΠ½ΠΊΡΠΈΡ ΡΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ PR-ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΡ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: Π΄ΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΉ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΠΊΡΡΡ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ. ΠΠ°Π΄Π°ΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°ΡΡ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΠΏΠΏΠ°ΡΠ°Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°ΡΡΠ½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ ΠΏΠΎ ΠΈΠΌΠΈΠ΄ΠΆΠΌΠ΅ΠΉΠΊΠΈΠ½Π³Ρ, Π±ΡΠ΅Π½Π΄ΠΈΠ½Π³Ρ ΠΈ ΠΈΠ²Π΅Π½Ρ-ΠΌΠ΅Π½Π΅Π΄ΠΆΠΌΠ΅Π½ΡΡ; ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠ΅ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΎΠ±ΡΡΠΈΠΉ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ; ΠΎΠΏΠΈΡΠ°ΡΡ ΡΠΎΠ»Ρ ΠΠ²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΎΠ³ΠΎ ΠΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π‘ΠΎΡΠ·Π° ΠΊΠ°ΠΊ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΎΡΠ° ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΡΡΠ°; ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠ²Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ; Π΄Π°ΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ. Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π±Π°Π·Π°: Π½Π°ΡΡΠ½ΡΠ΅ ΡΡΡΠ΄Ρ Π. ΠΡΠΊΠΎΠ²ΠΎΠΉ, Π. ΠΠ°Π²ΡΡ, Π. ΠΠ°Π½ΠΊΡΡΡ
ΠΈΠ½Π°, Π. ΠΠΆΠ΅Π½Π΅ΡΠ°, Π. ΠΠ°Π²Π΅ΡΠΈΠ½ΠΎΠΉ, Π£. Π₯Π°Π»ΡΡΠ±Π°ΡΡΠ°, ΠΠΆ. ΠΠΎΠ»Π΄Π±Π»Π°ΡΡΠ° Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΡΠ΄Ρ Π. ΠΠ°ΡΡΠΌΠ°Π½Π° ΠΎ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½ΠΎΠΌ Π±ΠΈΠ·Π½Π΅ΡΠ΅, Π. ΠΠΆΠΎΡΠ΄Π°Π½Π° ΠΎ ΠΏΡΠΎΠ΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ ΠΈ Π΄Ρ. ΠΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π±Π°Π·Π°: PR-Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ ΠΈ ΠΠ²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΎΠ³ΠΎ ΠΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π‘ΠΎΡΠ·Π°; Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»ΡΡΠΎΡΠ° ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΡΡΠ°ΡΠ΅ΠΉ ΠΎΠ± Π£ΠΊΡΠ°ΠΈΠ½Π΅ Π² Π΅Π²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΈΡ
Π‘ΠΠ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π² Π±Π°Π·Π΅ ΠΏΡΠΎΠ΅ΠΊΡΠ° ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΈΠ΄ΠΆΠ° Π£ΠΊΡΠ°ΠΈΠ½Ρ Β«OkoΒ»; Π΄Π°Π½Π½ΡΠ΅ Π±Π°Π·Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π‘ΠΠ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΌΠ΅Π΄ΠΈΠ° Factiva; Π΄Π°Π½Π½ΡΠ΅ Google.Analytics. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΉ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΠΊΡΡΡ ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΈΡΡΠ΅Ρ ΠΈΠΌΠΈΠ΄ΠΆ ΡΡΡΠ°Π½Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½Ρ. Π’Π΅Π·ΠΈΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Ρ Π½Π° ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΡΡΠ½ΠΎΠΌ ΡΠΎΡΡΠΌΠ΅ Β«ΠΠ΅Π΄ΠΈΠ° Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΌΠΈΡΠ΅. 57-Π΅ ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³ΡΠΊΠΈΠ΅ ΡΡΠ΅Π½ΠΈΡΒ», ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ Π² ΡΠ±ΠΎΡΠ½ΠΈΠΊΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΡΠ°ΡΠ΅ΠΉ ΡΠΎΡΡΠΌΠ° ΠΈ ΠΈΠΌΠ΅ΡΡ ΡΡΠ°ΡΡΡ Π½Π°ΡΡΠ½ΠΎΠΉ ΡΡΠ°ΡΡΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠΉ Π² Π±Π°Π·Π΅ Π ΠΠΠ¦. Π‘ΡΡΡΠΊΡΡΡΠ° ΡΠ°Π±ΠΎΡΡ: Π Π°Π±ΠΎΡΠ° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, 3 Π³Π»Π°Π²: Β«ΡΡΠ½ΠΊΡΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ±ΡΡΠΈΡ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½ΡΒ», Β«ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ±ΡΡΠΈΠ΅ ΠΠ²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΎΠ³ΠΎ ΠΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π‘ΠΎΡΠ·Π°Β» ΠΈ Β«ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΠΠ²ΡΠΎΠ²ΠΈΠ΄Π΅Π½ΠΈΡ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΊΠΈ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΈΠ΄ΠΆΠ° ΡΡΡΠ°Π½ΡΒ», Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ, ΡΠΏΠΈΡΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ ΠΈΠ· 67 ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΠΈ 12 ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. ΠΠ±ΡΠΈΠΉ ΠΎΠ±ΡΠ΅ΠΌ 76 ΡΡΡΠ°Π½ΠΈΡ.Abstract of graduating qualification thesis Mikita Arlou INTERNATIONAL MUSIC CONTEST IN HOST COUNTRY IMAGE FORMATION (ON THE EXAMPLE OF EUROVISION 2017) Supervisor associate professor Elena Bykova, doctor of philology Department of PR in business full-time study Relevance: the international music contest Eurovision as the most wide scale regular high tech TV and Media event which annually emphasizes audience attention on national cultural features of the host country, forms tourist flows which have huge influence on territorial image formation. Besides the win of a participating in the Eurovision country often shows the ideological and political European vector and in fact serves as political PR of the winning or host country. Consequently the analysis of applied communication technologies is relevant and in-demand for event PR. Research object: communication activities of international music contest (on the example of Eurovision in Kyiv in 2017). Research subject: function of status PR event in country image formation. The aim of research: to prove that international music contest Eurovision contributes host country image formation. The tasks of research: to develop research terminology based on scientific literature on image making, branding and event management; to define actual communication technologies applied in special PR events on country image formation; to describe European Broadcasting Union role in host country image formation; to appreciate effectiveness of applied communication technologies on host country image formation in Eurovision; to give recommendations for host country image formation with the help of Eurovision. Theoretical base: scientific works written by E. Bykova, D. Gavra, A. Pankrukhin, B. Jenes, E. Kaverina, U. Halcbaur, J. Goldblatt and D. PassmanΒ΄s works on music business and P. Jordan on county image building with the help of Eurovision, etc. The empirical base: PR documents from official Eurovision and European Broadcasting Union websites; more than 1.5 million articles on Ukraine in European media stored in the base of international Ukrainian image monitoring project Oko; content of the mass media and social media base Factiva; Google.Analytics data. Practical significance: the research proves that international music contest Eurovision is relevant for the host country image formation independently of the success level of applied country image formation communication technologies. Approbation: General positions of current thesis were aprobated on international scientific forum Media in modern world and were published at the collection of articles of the forum and have the status of a scientific article posted in the RINC database. Thesis structure: Research consists of introduction, 3 chapters: Special event function in country image formation, Eurovision as EBU special event and communication potential of Eurovision as a platform for image formation; conclusion, literature list from 67 positions and 12 attachments. The total volume is 76 pages
Esofagografia e TC vs reperti endoscopici nella diagnostica del cancro esofageo
Aim of our study was to assess the accuracy of diagnostic imaging in establishing site, morphology and size of the neoplasm comparing surgical specimens or endoscopic examination with esophagograms and CT in patients with esophageal cancer. CT accuracy in defining TNM staging was also evaluated. From 1993 to 2000 we examined 39 patients with esophageal cancer: 30 males (77%) and 9 females (23%), age range 41-85 years. All patients underwent esophagogram, digestive endoscopy, and chest and abdominal CT. In 22 patients who underwent surgery, we evaluated the correlation between diagnostic imaging and surgical specimens. Patients were divided into 3 groups on the basis of discrepancy between pathological and radiological measurements: =/ 3 cm. Esophagogram identified neoplasm in 38 patients out of 39, while CT identified neoplasm in all patients. Location and morphology of the neoplasm established at endoscopy were confirmed in all patients. Lesion length measured at esophagogram corresponded to length of surgical specimens in 13 of the 22 surgically treated patients (59%). In this group there was a dominance of polypoid and stenotic tumor forms. In the remaining 9 cases there was a dominance of ulcerative tumor forms. CT measurement corresponded in 7 patients (32%) with a dominance of polypoid and stenotic tumor forms. T staging performed with CT corresponded to surgical specimens in 12 patients (54%, T3-T4). N staging correlated in 19 patients (86%). CT identified distant metastases in 6 patients (27%). Our study proves a high sensitivity of esophagogram and CT in the diagnosis of esophageal carcinoma. Esophagogram presented a higher accuracy in establishing tumor length (59% of cases, as compared to CT 32%). Tumor morphology influenced the accuracy of the esophagogram, and highest accuracy was obtained in polypoid and stenotic tumors. T staging performed with CT corresponded to surgical specimens in advanced stages (T3-T4), while accuracy was poorer in smaller superficial lesions (T1-T2) due to the inability of CT to differentiate the layers of the esophageal wall. N understaging in 14% of cases did not modify surgical management. CT presented a high sensitivity in the identification of loco-regional lymph nodes and identified distant metastases in 6 patients. In conclusion, these techniques are accurate and non-invasive and their role in establishing the correct management is therefore important
- β¦