1,217 research outputs found

    Minimally Invasive Total Hip Arthroplasty in a Patient with Hereditary Multiple Exostoses: A Case Report

    Get PDF
    Hip geometry abnormalities found in patients with hereditary multiple exostoses (HME) could promote premature hip joint degeneration which needs treatment. We report the case of a 45-year old male with right hip arthrosis who underwent two-incision minimally invasive (MIS-2) total hip arthroplasty (THA), with satisfactory outcome. This technique could be an alternative approach for performing THA in patients with hereditary multiple exostoses

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    Control of Mitochondrial Morphology Through Differential Interactions of Mitochondrial Fusion and Fission Proteins

    Get PDF
    Mitochondria in mammals are organized into tubular networks that undergo frequent shape change. Mitochondrial fission and fusion are the main components mediating the mitochondrial shape change. Perturbation of the fission/fusion balance is associated with many disease conditions. However, underlying mechanisms of the fission/fusion balance are not well understood. Mitochondrial fission in mammals requires the dynamin-like protein DLP1/Drp1 that is recruited to the mitochondrial surface, possibly through the membrane-anchored protein Fis1 or Mff. Additional dynamin-related GTPases, mitofusin (Mfn) and OPA1, are associated with the outer and inner mitochondrial membranes, respectively, and mediate fusion of the respective membranes. In this study, we found that two heptad-repeat regions (HR1 and HR2) of Mfn2 interact with each other, and that Mfn2 also interacts with the fission protein DLP1. The association of the two heptad-repeats of Mfn2 is fusion inhibitory whereas a positive role of the Mfn2/DLP1 interaction in mitochondrial fusion is suggested. Our results imply that the differential binding of Mfn2-HR1 to HR2 and DLP1 regulates mitochondrial fusion and that DLP1 may act as a regulatory factor for efficient execution of both fusion and fission of mitochondria

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Ceramic on ceramic bearing fractures in total hip arthroplasty : an analysis of data from the national joint registry

    Get PDF
    Aims: Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR). Patients and Methods: We analysed data on 111,681 primary CoC THA’s and 182 linked revisions for bearing fracture recorded in NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. Results: 99.8% of bearings were CeramTec Biolox® products. Revisions for fracture were linked to 7 of 79,442 (0.009%) Biolox® Delta heads, 38 of 31,982 (0.119%) Biolox® Forte heads, 101 of 80,170 (0.126%) Biolox® Delta liners and 35 of 31,258 (0.112%) Biolox® Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (χ2=68.0, p<0.0001). The highest fracture risk were observed in the 28mm Biolox® Forte subgroup (0.382%). There were no fractures in the 40mm head group for either ceramic type. Liner thickness was not predictive of fracture (p=0.67). BMI was independently associated with revision for both head fractures (OR 1.09 per unit increase, p=0.031) and liner fractures (OR 1.06 per unit increase, p=0.006). Conclusions: We report the largest study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low, however previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture

    Increased Number of Cerebellar Granule Cells and Astrocytes in the Internal Granule Layer in Sheep Following Prenatal Intra-amniotic Injection of Lipopolysaccharide

    Get PDF
    Chorioamnionitis is an important problem in perinatology today, leading to brain injury and neurological handicaps. However, there are almost no data available regarding chorioamnionitis and a specific damage of the cerebellum. Therefore, this study aimed at determining if chorioamnionitis causes cerebellar morphological alterations. Chorioamnionitis was induced in sheep by the intra-amniotic injection of lipopolysaccharide (LPS) at a gestational age (GA) of 110 days. At a GA of 140 days, we assessed the mean total and layer-specific volume and the mean total granule cell (GCs) and Purkinje cell (PC) number in the cerebelli of LPS-exposed and control animals using high-precision design-based stereology. Astrogliosis was assessed in the gray and white matter (WM) using a glial fibrillary acidic protein staining combined with gray value image analysis. The present study showed an unchanged volume of the total cerebellum as well as the molecular layer, outer and inner granular cell layers (OGL and IGL, respectively), and WM. Interestingly, compared with controls, the LPS-exposed brains showed a statistically significant increase (+20.4%) in the mean total number of GCs, whereas the number of PCs did not show any difference between the two groups. In addition, LPS-exposed animals showed signs of astrogliosis specifically affecting the IGL. Intra-amniotic injection of LPS causes morphological changes in the cerebellum of fetal sheep still detectable at full-term birth. In this study, changes were restricted to the inner granule layer. These cerebellar changes might correspond to some of the motor or non-motor deficits seen in neonates from compromised pregnancies

    Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; The widely used k top scoring pair (k-TSP) algorithm is a simple yet powerful parameter-free classifier. It owes its success in many cancer microarray datasets to an effective feature selection algorithm that is based on relative expression ordering of gene pairs. However, its general robustness does not extend to some difficult datasets, such as those involving cancer outcome prediction, which may be due to the relatively simple voting scheme used by the classifier. We believe that the performance can be enhanced by separating its effective feature selection component and combining it with a powerful classifier such as the support vector machine (SVM). More generally the top scoring pairs generated by the k-TSP ranking algorithm can be used as a dimensionally reduced subspace for other machine learning classifiers.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; We developed an approach integrating the k-TSP ranking algorithm (TSP) with other machine learning methods, allowing combination of the computationally efficient, multivariate feature ranking of k-TSP with multivariate classifiers such as SVM. We evaluated this hybrid scheme (k-TSP+SVM) in a range of simulated datasets with known data structures. As compared with other feature selection methods, such as a univariate method similar to Fisher's discriminant criterion (Fisher), or a recursive feature elimination embedded in SVM (RFE), TSP is increasingly more effective than the other two methods as the informative genes become progressively more correlated, which is demonstrated both in terms of the classification performance and the ability to recover true informative genes. We also applied this hybrid scheme to four cancer prognosis datasets, in which k-TSP+SVM outperforms k-TSP classifier in all datasets, and achieves either comparable or superior performance to that using SVM alone. In concurrence with what is observed in simulation, TSP appears to be a better feature selector than Fisher and RFE in some of the cancer datasets.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; The k-TSP ranking algorithm can be used as a computationally efficient, multivariate filter method for feature selection in machine learning. SVM in combination with k-TSP ranking algorithm outperforms k-TSP and SVM alone in simulated datasets and in some cancer prognosis datasets. Simulation studies suggest that as a feature selector, it is better tuned to certain data characteristics, i.e. correlations among informative genes, which is potentially interesting as an alternative feature ranking method in pathway analysis

    Dimerization of Translationally Controlled Tumor Protein Is Essential For Its Cytokine-Like Activity

    Get PDF
    BACKGROUND:Translationally Controlled Tumor Protein (TCTP) found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF). Human recombinant HRF (HrHRF) has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn). METHODS AND FINDINGS:We found that only NH(2)-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2)-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP) was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP). Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2)-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS:Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres
    corecore