25 research outputs found
Advances in short bowel syndrome: an updated review
Short bowel syndrome (SBS) continues to be an important clinical problem due to its high mortality and morbidity as well as its devastating socioeconomic effects. The past 3 years have witnessed many advances in the investigation of this condition, with the aim of elucidating the cellular and molecular mechanisms of intestinal adaptation. Such information may provide opportunities to exploit various factors that act as growth agents for the remaining bowel mucosa and may suggest new therapeutic strategies to maintain gut integrity, eliminate dependence on total parenteral nutrition, and avoid the need for intestinal transplantation. This review summarizes current research on SBS over the last few years.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47168/1/383_2005_Article_1500.pd
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Endometrium is not the primary site of origin of pelvic high-grade serous carcinoma in BRCA1 or BRCA2 mutation carriers
<p>Serous endometrial intraepithelial carcinoma has been proposed to be a potential precursor lesion of pelvic high-grade serous carcinoma. If true, an increased incidence of uterine papillary serous carcinomas would be expected in BRCA1 and BRCA2 mutation carriers, who are at high-risk of developing pelvic high-grade serous carcinoma. This study explored particularly the occurrence of uterine papillary serous carcinoma, as well as other endometrial cancers, following risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 germline mutation attending a tertiary multidisciplinary clinic. A consecutive series of women with a BRCA1 or BRCA2 mutation who had undergone risk-reducing salpingo-oophorectomy without hysterectomy at the University Medical Center Groningen from January 1996 until March 2012 were followed prospectively. They were crossed with the histopathology list of endometrial cancer diagnoses reported by the Dutch nationwide pathology database PALGA. To assess the risk of endometrial cancer, a standardized incidence ratio was calculated comparing the observed with the expected number of endometrial cancer cases. Overall, 201 BRCA1 and 144 BRCA2 mutation carriers at a median age of 50 years (range, 32-78) were analyzed. After a median follow-up period of 6 years, after risk-reducing salpingo-oophorectomy, two cases of endometrial cancer were diagnosed, whereas the expected number was 0.94 cases (standardized incidence ratio 2.13; 95% confidence interval 0.24-7.69; P-0.27). Both endometrial cancer cases were of the endometrioid histological subtype. We showed that the incidence of endometrial cancer following risk-reducing salpingo-oophorectomy, especially uterine papillary serous carcinoma, in women at high-risk of developing pelvic high-grade serous carcinoma is not increased. On the basis of our data, the hypothesis of serous endometrial intraepithelial carcinoma being an important precursor lesion of pelvic high-grade serous carcinoma seems unlikely. There is no need to add a prophylactic hysterectomy to risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. Modern Pathology (2013) 26, 572-578; doi:10.1038/modpathol.2012.169; published online 19 October 2012</p>
PROGRESS TOWARDS STEADY STATE ON NSTX
In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal beta and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on NSTX has been raised from kappa similar to 2.1 to kappa similar to 2.6-approximately a 25% increase. This increase in elongation has led to a substantial increase in the toroidal beta for long pulse discharges. The increase in beta associated with an increase in plasma current at nearly fixed poloidal beta, which enables higher beta(1), with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of I MA has been sustained for 1 s (0.8 s current flat-top). Data are presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption and to delay the onset of MHD instabilities. Based on these results, a modelled integrated scenario, which has 100% non-inductive current drive with very high toroidal, will also be discussed. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity (delta similar to 0.8) at elevated elongation (kappa similar to 2.5). The other main requirement of steady state on NSTX is the ability to drive a fraction of the total plasma current with RF waves. The results of high harmonic fast wave heating and current drive studies as well as electron Bernstein wave emission studies will be presented.X1115sciescopu
Recommended from our members
Progress towards steady state on NSTX
In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal β and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on NSTX has been raised from κ ∼ 2.1 to κ ∼ 2.6 - approximately a 25% increase. This increase in elongation has led to a substantial increase in the toroidal β for long pulse discharges. The increase in β is associated with an increase in plasma current at nearly fixed poloidal β, which enables higher βt with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 s (0.8 s current flat-top). Data are presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption and to delay the onset of MHD instabilities. Based on these results, a modelled integrated scenario, which has 100% non-inductive current drive with very high toroidal β, will also be discussed. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity (δ ∼ 0.8) at elevated elongation (κ ∼ 2.5). The other main requirement of steady state on NSTX is the ability to drive a fraction of the total plasma current with RF waves. The results of high harmonic fast wave heating and current drive studies as well as electron Bernstein wave emission studies will be presented. © 2006 IAEA, Vienna
Recommended from our members
Overview of recent physics results from the National Spherical Torus Experiment (NSTX)
The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for future spherical torus (ST) devices and ITER. Plasma durations up to 1.6 s (five current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while simultaneously achieving β and β values of 17% and 5.7 (%m T MA ), respectively. A newly available motional Stark effect diagnostic has enabled validation of current-drive sources and improved the understanding of NSTX 'hybrid'-like scenarios. In MHD research, ex-vessel radial field coils have been utilized to infer and correct intrinsic EFs, provide rotation control and actively stabilize the n ≤ 1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence research, the low aspect ratio and a wide range of achievable β in the NSTX provide unique data for confinement scaling studies, and a new microwave scattering diagnostic is being used to investigate turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large toroidal Alfven eigenmodes (TAEs) analogous to the 'sea-of-TAE' modes predicted for ITER, and three-wave coupling processes have been observed for the first time. In boundary physics research, advanced shape control has enabled studies of the role of magnetic balance in H-mode access and edge localized mode stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode-compatible radiative divertor, and lithium conditioning has demonstrated particle pumping and results in improved thermal confinement. Finally, non-solenoidal plasma start-up experiments have achieved plasma currents of 160 kA on closed magnetic flux surfaces utilizing coaxial helicity injection. © 2007 IAEA. T N -