2,371 research outputs found

    The transformation of asymmetry: the evolution of Philippine and Vietnamese South China Sea policies and the asymmetry of attention

    Full text link
    Most relations among states are asymmetric due to a disparity of capacities. This does not mean the strong can crush the weak at will, as the cost could outweigh the gain. If the weaker side sees an issue as more important than the stronger side, the former is likely to invest more attention into building a more robust will and tougher stance against the pressure at hand. However, China’s South China Sea (SCS) policy and neighbouring states’ responses to it demonstrate another scenario: small states may lose the advantages of heightened attention if the great power shifts its focus onto the same issue, dedicating more political resources to it. This represents a missing piece in the established theory of asymmetric politics. The present article examines pertinent policy adjustments by the Philippines and Vietnam before and after Chinese diplomacy gravitated towards prioritising the SCS from 2014 to 2016, especially after the 2016 Arbitration. I argue that, with the US increasingly presence in the region, China’s attention shift to the SCS reflects Beijing’s decision to put more diplomatic resources and time into forming a consistent strategy to replace its uncoordinated policies out of the inattention, which previously motivated small states to make significant policy adjustments in response. In analysing Philippine and the Vietnamese stances on the South China Sea, I gauge the reasons for the two countries’ policy changes from a proactive stance in internationalising the issue to a low-profile posture as an attempt to mend fences with China after the attention shift. Hence, this study aims to reveal the motives behind small states’ policy adjustments, as well as to expand the explanatory scope of the theory of asymmetric attention

    Solution of the Nuclear Shell Model by Symmetry-Dictated Truncation

    Full text link
    The dynamical symmetries of the Fermion Dynamical Symmetry Model are used as a principle of truncation for the spherical shell model. Utilizing the usual principle of energy-dictated truncation to select a valence space, and symmetry-dictated truncation to select a collective subspace of that valence space, we are able to reduce the full shell model space to one of manageable dimensions with modern supercomputers, even for the heaviest nuclei. The resulting shell model then consists of diagonalizing an effective Hamiltonian within the restricted subspace. This theory is not confined to any symmetry limits, and represents a full solution of the original shell model if the appropriate effective interaction of the truncated space can be determined. As a first step in constructing that interaction, we present an empirical determination of its matrix elements for the collective subspace with no broken pairs in a representative set of nuclei with 130A250130\le A \le 250. We demonstrate that this effective interaction can be parameterized in terms of a few quantities varying slowly with particle number, and is capable of describing a broad range of low-energy observables for these nuclei. Finally we give a brief discussion of extending these methods to include a single broken collective pair.Comment: invited paper for J. Phys. G, 57 pages, Latex, 18 figures a macro are available under request at [email protected]

    Vortex pinning by natural defects in thin films of YBa2Cu3O7−δ

    Get PDF
    Although vortex pinning in laser-ablated YBa2Cu3O7−δ films on (100) SrTiO3 is dominated by threading dislocations, many other natural pinning sites are present. To identify the contribution from twin planes, surface corrugations and point defects, we manipulate the relative densities of all defects by post-annealing films with various as-grown dislocation densities, ndisl. While a universal magnetic field B dependence of the transport current density js(B, T) is observed (independently of ndisl, temperature T and the annealing treatment), the defect structure changes considerably. Correlating the microstructure to js(B, T), it becomes clear that surface roughness, twins and point defects are not important at low magnetic fields compared to linear defect pinning. Transmission electron microscopy indicates that threading dislocations are not part of grain boundaries nor are they related to the twin domain structure. We conclude that js(B, T) is essentially determined by pinning along threading dislocations, naturally induced during the growth process. Even in high magnetic fields, where the vortex density outnumbers ndisl, it appears that linear defects stabilize the vortex lattice by means of the vortex–vortex interaction.

    Teleportation-based realization of an optical quantum two-qubit entangling gate

    Full text link
    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by Gottesman and Chuang [Nature \textbf{402}, 390 (1999)], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multi-particle entangled states, Bell state measurements and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods we demonstrate the smallest non-trivial module in such a scheme---a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates and the other uses four-photon hyper-entanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step towards the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.Comment: 10 pages, 6 figure

    Probing Local Variations of Superconductivity on the Surface of Ba(Fe1-xCox)2As2 Single Crystals

    Full text link
    The spatially resolved electrical transport properties have been studied on the surface of optimally-doped superconducting Ba(Fe1-xCox)2As2 single crystal by using a four-probe scanning tunneling microscopy. While some non-uniform contrast appears near the edge of the cleaved crystal, the scanning electron microscopy (SEM) reveals mostly uniform contrast. For the regions that showed uniform SEM contrast, a sharp superconducting transition at TC = 22.1 K has been observed with a transition width (delta)Tc = 0.2 K. In the non-uniform contrast region, TC is found to vary between 19.6 and 22.2 K with (delta)Tc from 0.3 to 3.2 K. The wavelength dispersive x-ray spectroscopy reveals that Co concentration remains 7.72% in the uniform region, but changes between 7.38% and 7.62% in the non-uniform region. Thus the variations of superconductivity are associated with local compositional change.Comment: 18 pages, 5 figure

    A novel approach to phylogenetic tree construction using stochastic optimization and clustering

    Get PDF
    BACKGROUND: The problem of inferring the evolutionary history and constructing the phylogenetic tree with high performance has become one of the major problems in computational biology. RESULTS: A new phylogenetic tree construction method from a given set of objects (proteins, species, etc.) is presented. As an extension of ant colony optimization, this method proposes an adaptive phylogenetic clustering algorithm based on a digraph to find a tree structure that defines the ancestral relationships among the given objects. CONCLUSION: Our phylogenetic tree construction method is tested to compare its results with that of the genetic algorithm (GA). Experimental results show that our algorithm converges much faster and also achieves higher quality than GA

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    Investigation of stimulated dynamics of vortex-matter in high-temperature superconductors

    Full text link
    A simple mechanical method for the investigation of Abrikosov vortex lattice stimulated dynamics in superconductors has been used. By this method we studied the action of pulsed magnetic fields on the vortex lattice and established the resulting change of the course of relaxation processes in the vortex matter in high-temperature superconductors. This method can be used for investigation of phase transitions in vortex matter both high-temperature and exotic superconductors.Comment: 5 pages, 6 figure
    corecore