70 research outputs found
Simulations of galactic dynamos
We review our current understanding of galactic dynamo theory, paying
particular attention to numerical simulations both of the mean-field equations
and the original three-dimensional equations relevant to describing the
magnetic field evolution for a turbulent flow. We emphasize the theoretical
difficulties in explaining non-axisymmetric magnetic fields in galaxies and
discuss the observational basis for such results in terms of rotation measure
analysis. Next, we discuss nonlinear theory, the role of magnetic helicity
conservation and magnetic helicity fluxes. This leads to the possibility that
galactic magnetic fields may be bi-helical, with opposite signs of helicity and
large and small length scales. We discuss their observational signatures and
close by discussing the possibilities of explaining the origin of primordial
magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic
fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Measurement of the Neutron Spin Structure Function with a Polarized ^3He Target
Results are reported from the HERMES experiment at HERA on a measurement of
the neutron spin structure function in deep inelastic scattering
using 27.5 GeV longitudinally polarized positrons incident on a polarized
He internal gas target. The data cover the kinematic range
and . The integral evaluated at a fixed of is . Assuming Regge behavior at low , the first
moment is .Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering
Spin asymmetries of semi-inclusive cross sections for the production of
positively and negatively charged hadrons have been measured in deep-inelastic
scattering of polarized positrons on polarized hydrogen and 3He targets, in the
kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark
distributions are extracted as a function of x for up $(u+u_bar) and down
(d+d_bar) flavors. The up quark polarization is positive and the down quark
polarization is negative in the measured range. The polarization of the sea is
compatible with zero. The first moments of the polarized quark distributions
are presented. The isospin non-singlet combination Delta_q_3 is consistent with
the prediction based on the Bjorken sum rule. The moments of the polarized
quark distributions are compared to predictions based on SU(3)_f flavor
symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version
contains tables of asymmetries and correlation matri
Combined use of ionophore and virginiamycin for finishing Nellore steers fed high concentrate diets
Zebu cattle fed high concentrate diets may present inconsistent performance due to the occurrence of metabolic disorders, like acidosis. The isolated use of ionophores and virginiamycin in high grain diets can improve animal performance and reduce the incidence of such disorders, but recent studies suggested that their combination may have an additive effect. Thus, 72 Nellore steers, 389 ± 15 kg initial body weight (BW), were confined and fed for 79 days to evaluate the combination of virginiamycin and salinomycin on performance and carcass traits. Animals were allocated to a randomized complete block design by BW, in a 2 × 2 factorial arrangement of treatments, with two concentrate levels (73 and 91 %) and two virginiamycin levels (0 and 15 mg kg-1), and salinomycin (13 mg kg-1) included in all diets. The interaction was not significant (p > 0.05). Dry matter intake (DMI), average daily gain (ADG), gain-to-feed ratio (G:F), starch consumed, and fecal starch content were higher (p 0.05) between treatments. Starch consumed and estimated dietary net energy for maintenance (NEm) and gain (NEg) were higher (p < 0.05) for virginiamycin-treated animals, with no substantial effects on carcass traits. The inclusion of virginiamycin in finishing diets containing salinomycin reduced DMI while maintaining ADG and improving NEm and NEg, suggesting an additive effect of virginiamycin and ionophores, but without affecting carcass quality
European all-cause excess and influenza-attributable mortality in the 2017/18 season: should the burden of influenza B be reconsidered?
Objectives
Weekly monitoring of European all-cause excess mortality, the EuroMOMO network, observed high excess mortality during the influenza B/Yamagata dominated 2017/18 winter season, especially among elderly. We describe all-cause excess and influenza-attributable mortality during the season 2017/18 in Europe.
Methods
Based on weekly reporting of mortality from 24 European countries or sub-national regions, representing 60% of the European population excluding the Russian and Turkish parts of Europe, we estimated age stratified all-cause excess morality using the EuroMOMO model. In addition, age stratified all-cause influenza-attributable mortality was estimated using the FluMOMO algorithm, incorporating influenza activity based on clinical and virological surveillance data, and adjusting for extreme temperatures.
Results
Excess mortality was mainly attributable to influenza activity from December 2017 to April 2018, but also due to exceptionally low temperatures in February-March 2018. The pattern and extent of mortality excess was similar to the previous A(H3N2) dominated seasons, 2014/15 and 2016/17. The 2017/18 overall all-cause influenza-attributable mortality was estimated to be 25.4 (95%CI 25.0-25.8) per 100,000 population; 118.2 (116.4-119.9) for persons aged 65. Extending to the European population this translates into over-all 152,000 deaths.
Conclusions
The high mortality among elderly was unexpected in an influenza B dominated season, which commonly are considered to cause mild illness, mainly among children. Even though A(H3N2) also circulated in the 2017/18 season and may have contributed to the excess mortality among the elderly, the common perception of influenza B only having a modest impact on excess mortality in the older population may need to be reconsidered.Peer Reviewe
The HERMES Spectrometer
The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of Il, D, and He-3. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of detectors for particle identification (a lead-glass calorimeter, a pre-shower detector, a transition radiation detector, and a threshold Cherenkov detector). Two of the main features of the spectrometer are its good acceptance and identification of both positrons and hadrons, in particular pions. These characteristics, together with the purity of the targets, are allowing HERMES to make unique contributions to the understanding of how the spins of the quarks contribute to the spin of the nucleon. (C) 1998 Elsevier Science B.V. All rights reserved
- …