523 research outputs found

    Explicit solution of the Lindblad equation for nearly isotropic boundary driven XY spin 1/2 chain

    Full text link
    Explicit solution for the 2-point correlation function in a non-equilibrium steady state of a nearly isotropic boundary-driven open XY spin 1/2 chain in the Lindblad formulation is provided. A non-equilibrium quantum phase transition from exponentially decaying correlations to long-range order is discussed analytically. In the regime of long-range order a new phenomenon of correlation resonances is reported, where the correlation response of the system is unusually high for certain discrete values of the external bulk parameter, e.g. the magnetic field.Comment: 20 Pages, 5 figure

    Quantum invariants of motion in a generic many-body system

    Full text link
    Dynamical Lie-algebraic method for the construction of local quantum invariants of motion in non-integrable many-body systems is proposed and applied to a simple but generic toy model, namely an infinite kicked tVt-V chain of spinless fermions. Transition from integrable via {pseudo-integrable (\em intermediate}) to quantum ergodic (quantum mixing) regime in parameter space is investigated. Dynamical phase transition between ergodic and intermediate (neither ergodic nor completely integrable) regime in thermodynamic limit is proposed. Existence or non-existence of local conservation laws corresponds to intermediate or ergodic regime, respectively. The computation of time-correlation functions of typical observables by means of local conservation laws is found fully consistent with direct calculations on finite systems.Comment: 4 pages in REVTeX with 5 eps figures include

    Parametric statistics of zeros of Husimi representations of quantum chaotic eigenstates and random polynomials

    Full text link
    Local parametric statistics of zeros of Husimi representations of quantum eigenstates are introduced. It is conjectured that for a classically fully chaotic systems one should use the model of parametric statistics of complex roots of Gaussian random polynomials which is exactly solvable as demonstrated below. For example, the velocities (derivatives of zeros of Husimi function with respect to an external parameter) are predicted to obey a universal (non-Maxwellian) distribution dP(v)/dv2=2/(πσ2)(1+v2/σ2)3,{d P(v)}/{dv^2} = 2/(\pi\sigma^2)(1 + |v|^2/\sigma^2)^{-3}, where σ2\sigma^2 is the mean square velocity. The conjecture is demonstrated numerically in a generic chaotic system with two degrees of freedom. Dynamical formulation of the ``zero-flow'' in terms of an integrable many-body dynamical system is given as well.Comment: 13 pages in plain Latex (1 figure available upon request

    On general relation between quantum ergodicity and fidelity of quantum dynamics

    Full text link
    General relation is derived which expresses the fidelity of quantum dynamics, measuring the stability of time evolution to small static variation in the hamiltonian, in terms of ergodicity of an observable generating the perturbation as defined by its time correlation function. Fidelity for ergodic dynamics is predicted to decay exponentially on time-scale proportional to delta^(-2) where delta is the strength of perturbation, whereas faster, typically gaussian decay on shorter time scale proportional to delta^(-1) is predicted for integrable, or generally non-ergodic dynamics. This surprising result is demonstrated in quantum Ising spin-1/2 chain periodically kicked with a tilted magnetic field where we find finite parameter-space regions of non-ergodic and non-integrable motion in thermodynamic limit.Comment: Slightly revised version, 4.5 RevTeX pages, 2 figure

    PT-symmetric quantum Liouvillian dynamics

    Full text link
    We discuss a combination of unitary and anti-unitary symmetry of quantum Liouvillian dynamics, in the context of open quantum systems, which implies a D2 symmetry of the complex Liovillean spectrum. For sufficiently weak system-bath coupling it implies a uniform decay rate for all coherences, i.e. off-diagonal elements of the system's density matrix taken in the eigenbasis of the Hamiltonian. As an example we discuss symmetrically boundary driven open XXZ spin 1/2 chains.Comment: Note [18] added with respect to a published version, explaining the symmetry of the matrix V [eq. (14)

    Markovian kinetic equation approach to electron transport through quantum dot coupled to superconducting leads

    Full text link
    We present a derivation of Markovian master equation for the out of equilibrium quantum dot connected to two superconducting reservoirs, which are described by the Bogoliubov-de Gennes Hamiltonians and have the chemical potentials, the temperatures, and the complex order parameters as the relevant quantities. We consider a specific example in which the quantum dot is represented by the Anderson impurity model and study the transport properties, proximity effect and Andreev bound states in equilibrium and far from equilibrium setups.Comment: 10 pages, 6 figure

    Berry-Robnik level statistics in a smooth billiard system

    Full text link
    Berry-Robnik level spacing distribution is demonstrated clearly in a generic quantized plane billiard for the first time. However, this ultimate semi-classical distribution is found to be valid only for extremely small semi-classical parameter (effective Planck's constant) where the assumption of statistical independence of regular and irregular levels is achieved. For sufficiently larger semiclassical parameter we find (fractional power-law) level repulsion with phenomenological Brody distribution providing an adequate global fit.Comment: 10 pages in LaTeX with 4 eps figures include

    Exact solution for a diffusive nonequilibrium steady state of an open quantum chain

    Full text link
    We calculate a nonequilibrium steady state of a quantum XX chain in the presence of dephasing and driving due to baths at chain ends. The obtained state is exact in the limit of weak driving while the expressions for one- and two-point correlations are exact for an arbitrary driving strength. In the steady state the magnetization profile and the spin current display diffusive behavior. Spin-spin correlation function on the other hand has long-range correlations which though decay to zero in either the thermodynamical limit or for equilibrium driving. At zero dephasing a nonequilibrium phase transition occurs from a ballistic transport having short-range correlations to a diffusive transport with long-range correlations.Comment: 5 page

    Stability of quantum motion and correlation decay

    Full text link
    We derive a simple and general relation between the fidelity of quantum motion, characterizing the stability of quantum dynamics with respect to arbitrary static perturbation of the unitary evolution propagator, and the integrated time auto-correlation function of the generator of perturbation. Surprisingly, this relation predicts the slower decay of fidelity the faster decay of correlations is. In particular, for non-ergodic and non-mixing dynamics, where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale 1/delta^2, where delta is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbar->0, as the two limits delta->0 and hbar->0 do not commute. In addition we also discuss non-trivial dependence on the number of degrees of freedom. All the theoretical results are clearly demonstrated numerically on a celebrated example of a quantized kicked top.Comment: 32 pages, 10 EPS figures and 2 color PS figures. Higher resolution color figures can be obtained from authors; minor changes, to appear in J.Phys.A (March 2002
    corecore