63 research outputs found
Magnetic Field Effects on the Far-Infrared Absorption in Mn_12-acetate
We report the far-infrared spectra of the molecular nanomagnet Mn_12-acetate
(Mn_12) as a function of temperature (5-300 K) and magnetic field (0-17 T). The
large number of observed vibrational modes is related to the low symmetry of
the molecule, and they are grouped together in clusters. Analysis of the mode
character based on molecular dynamics simulations and model compound studies
shows that all vibrations are complex; motion from a majority of atoms in the
molecule contribute to most modes. Three features involving intramolecular
vibrations of the Mn_12 molecule centered at 284, 306 and 409 cm-1 show changes
with applied magnetic field. The structure near 284 cm displays the
largest deviation with field and is mainly intensity related. A comparison
between the temperature dependent absorption difference spectra, the gradual
low-temperature cluster framework distortion as assessed by neutron diffraction
data, and field dependent absorption difference spectra suggests that this mode
may involve Mn motion in the crown.Comment: 5 pages, 4 figures, PRB accepte
Infrared optical properties of Pr2CuO4
The ab-plane reflectance of a Pr2CuO4 single crystal has been measured over a
wide frequency range at a variety of temperatures, and the optical properties
determined from a Kramers-Kronig analysis. Above ~ 250 K, the low frequency
conductivity increases quickly with temperature; the resistivity follows the
form e^(E_a/k_BT), where E_a ~ 0.17 eV is much less than the inferred optical
gap of ~ 1.2 eV. Transport measurements show that at low temperature the
resistivity deviates from activated behavior and follows the form
e^[(T_0/T)^1/4], indicating that the dc transport in this material is due to
variable-range hopping between localized states in the gap. The four
infrared-active Eu modes dominate the infrared optical properties. Below ~ 200
K, a striking new feature appears near the low-frequency Eu mode, and there is
additional new fine structure at high frequency. A normal coordinate analysis
has been performed and the detailed nature of the zone-center vibrations
determined. Only the low-frequency Eu mode has a significant Pr-Cu interaction.
Several possible mechanisms related to the antiferromagnetism in this material
are proposed to explain the sudden appearance of this and other new spectral
features at low temperature.Comment: 11 pages, 7 embedded EPS figures, REVTeX
The Tc amplification by quantum interference effects in diborides
The model of two (s and p) channel superconductivity known to be necessary to
explain the superconductivity in MgB2 has been applied to the Al1-xMgxB2
diborides by tuning x from MgB2 to AlMgB4. The evolution of the interband
coupling parameter (probing the strength of the interchannel pairing due to
quantum interference effects) and the two gaps in the s and p channel as a
function of x have been calculated. While in MgB2 the quantum interference
effects give an amplification of Tc by a factor of 1.5 in comparison with the
dominant intra s band single channel pairing, in AlMgB4 the amplification is
about 100, in comparison with the dominant intra p band single channel pairing.Comment: 7 pages, 6 figure
- âŠ