158 research outputs found
Identification of G1-Regulated Genes in Normally Cycling Human Cells
BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitising agent compared to free paclitaxel
NK105 is a micellar nanoparticle formulation designed to enhance the delivery of paclitaxel (PTX) to solid tumours. It has been reported to exert antitumour activity in vivo and to have reduced neurotoxicity as compared to that of free PTX. The purpose of this study was to investigate the radiosensitising effect of NK105 in comparison with that of PTX. Lewis lung carcinoma (LLC)-bearing mice were administered a single intravenous (i.v.) injection of PTX or NK105; 24βh after the drug administration, a proportion of the mice received radiation to the tumour site or lung fields. Then, the antitumour activity and lung toxicity were evaluated. In one subset of mice, the tumours were excised and specimens were prepared for analysis of the cell cycle distribution by flow cytometry. Combined NK105 treatment with radiation yielded significant superior antitumour activity as compared to combined PTX treatment with radiation (P=0.0277). On the other hand, a histopathological study of lung sections revealed no significant difference in histopathological changes between mice treated with PTX and radiation and those treated with NK105 and radiation. Flow-cytometric analysis showed that NK105-treated LLC tumour cells showed more severe arrest at the G2/M phase as compared to PTX-treated tumour cells. The superior radiosensitising activity of NK105 was thus considered to be attributable to the more severe cell cycle arrest at the G2/M phase induced by NK105 as compared to that induced by free PTX. The present study results suggest that further clinical trials are warranted to determine the efficacy and feasibility of combined NK105 therapy with radiation
Runx1 Loss Minimally Impacts Long-Term Hematopoietic Stem Cells
RUNX1 encodes a DNA binding subunit of the core-binding transcription factors and is frequently mutated in acute leukemia, therapy-related leukemia, myelodysplastic syndrome, and chronic myelomonocytic leukemia. Mutations in RUNX1 are thought to confer upon hematopoietic stem cells (HSCs) a pre-leukemic state, but the fundamental properties of Runx1 deficient pre-leukemic HSCs are not well defined. Here we show that Runx1 deficiency decreases both apoptosis and proliferation, but only minimally impacts the frequency of long term repopulating HSCs (LT-HSCs). It has been variously reported that Runx1 loss increases LT-HSC numbers, decreases LT-HSC numbers, or causes age-related HSC exhaustion. We attempt to resolve these discrepancies by showing that Runx1 deficiency alters the expression of several key HSC markers, and that the number of functional LT-HSCs varies depending on the criteria used to score them. Finally, we identify genes and pathways, including the cell cycle and p53 pathways that are dysregulated in Runx1 deficient HSCs
Expression of NES-hTERT in Cancer Cells Delays Cell Cycle Progression and Increases Sensitivity to Genotoxic Stress
Telomerase is a reverse transcriptase associated with cellular immortality through telomere maintenance. This enzyme is activated in 90% of human cancers, and inhibitors of telomerase are currently in clinical trials to counteract tumor growth. Many aspects of telomerase biology have been investigated for therapy, particularly inhibition of the enzyme, but little was done regarding its subcellular shuttling. We have recently shown that mutations in the nuclear export signal of hTERT, the catalytic component of telomerase, led to a mutant (NES-hTERT) that failed to immortalize cells despite nuclear localization and catalytic activity. Expression of NES-hTERT in primary fibroblast resulted in telomere-based premature senescence and mitochondrial dysfunction. Here we show that expression of NES-hTERT in LNCaP, SQ20B and HeLa cells rapidly and significantly decreases their proliferation rate and ability to form colonies in soft agar while not interfering with endogenous telomerase activity. The cancer cells showed increased DNA damage at telomeric and extra-telomeric sites, and became sensitive to ionizing radiation and hydrogen peroxide exposures. Our data show that expression of NES-hTERT efficiently counteracts cancer cell growth in vitro in at least two different ways, and suggest manipulation with the NES of hTERT or its subcellular shuttling as a new strategy for cancer treatment
- β¦