1,256 research outputs found

    The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus

    Get PDF
    Oncolytic viral (OV) therapy has been considered as a promising treatment modality for brain tumors. Vasculostatin, the fragment of brain-specific angiogenesis inhibitor-1, shows anti-angiogenic activity against malignant gliomas. Previously, a vasculostatin-expressing oncolytic herpes simplex virus-1, Rapid Antiangiogenesis Mediated By Oncolytic virus (RAMBO), was reported to have a potent antitumor effect. Here, we investigated the therapeutic efficacy of RAMBO and cilengitide, an integrin inhibitor, combination therapy for malignant glioma. In vitro, tube formation was significantly decreased in RAMBO and cilengitide combination treatment compared with RAMBO or cilengitide monotherapy. Moreover, combination treatment induced a synergistic suppressive effect on endothelial cell migration compared with the control virus. RAMBO, combined with cilengitide, induced synergistic cytotoxicity on glioma cells. In the caspase-8 and -9 assays, the relative absorption of U87 Delta EGFR cell clusters treated with cilengitide and with RAMBO was significantly higher than that of those treated with control. In addition, the activity of caspase 3/7 was significantly increased with combination therapy. In vivo, there was a significant increase in the survival of mice treated with combination therapy compared with RAMBO or cilengitide monotherapy. These results indicate that cilengitide enhanced vasculostatin-expressing OV therapy for malignant glioma and provide a rationale for designing future clinical trials combining these two agents

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling in Single Josephson Junctions

    Full text link
    We have measured the current-voltage characteristics of small-capacitance single Josephson junctions at low temperatures (T < 0.04 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. We have clearly observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance of the SQUID arrays is much higher than the quantum resistance h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling in the single Josephson junction.Comment: RevTeX, 4 pages with 6 embedded figure

    The Two psbA Genes from the Thermophilic Cyanobacterium Synechococcus elongatus

    Full text link

    Quantum Effects in Small-Capacitance Single Josephson Junctions

    Full text link
    We have measured the current-voltage (I-V) characteristics of small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. The single-junction I-V curve is sensitive to the impedance of the environment, which can be tuned IN SITU. We have observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance R_0' of the SQUID arrays is much higher than the quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling within the theory of current-biased single Josephson junctions. Based on the theory, we have calculated the I-V curves numerically in order to compare with the experimental ones at R_0' >> R_K. The numerical calculation agrees with the experiments qualitatively. We also discuss the R_0' dependence of the single-Josephson-junction I-V curve in terms of the superconductor-insulator transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio

    The change of plasma C-reactive protein and metabolite concentrations, and MPS sick degree score in Landrase selected for resistance to MPS, Large Yorkshire selected for immune performances and the crossbreed

    Get PDF
    Swine Mycoplasma Hyopneumoniea, hp, is known as a major factor to affect for the specific pneumonia (MPS). This damages is very serious because carrier rate of hp in piglets from 3 to 4 months of age is very high, the rate of piglets that the response of antibody to hp shows positive is 80 % over, and the rate that has very terrible tissue from MPS is 51% in Japanese pig farm. We bred a resistant strain to MPS by selection to decrease MPS pathogenic condition over 5 generations using Landrase (MPS strain), and a high immune performance strain by selection for peripheral phagocytosis, complement activity and antibody production against erysipelatous vaccine using Large Yorkshire (HI strain)
    • …
    corecore