9,115 research outputs found

    Renormalization Constants using Quark States in Fixed Gauge

    Get PDF
    We present a status report on our calculation of the renormalization constants for the quark bilinears in quenched (O(a)) improved Wilson theory at (beta=6.4) using quark states in Landau gauge.Comment: 4 pages. Contribution to LATTICE00(Improvement), August, 2000, Bangalore Indi

    Computing the Slope of the Isgur-Wise Function

    Full text link
    We propose a method for evaluating the slope (and higher derivatives) of the Isgur-Wise function at the zero recoil point using lattice simulations. These derivatives are required for the extrapolation of the experimental data for B→D∗lΜˉB\rightarrow D^*l\bar\nu decays to the zero recoil point, from which the VcbV_{cb} element of the CKM-matrix can be determined.Comment: Latex File Southampton Preprint 93/94-07; Rome Preprint 93/98

    Effects of finite volume on the KL-KS mass difference

    Get PDF
    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of LĂŒscher and Lellouch and LĂŒscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K0 and K0ÂŻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KL-KS mass difference ΔMK and the CP-violating parameter ΔK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state

    Direct Production of Tripartite Pump-Signal-Idler Entanglement in the Above-Threshold Optical Parametric Oscillator

    Get PDF
    We calculate the quantum correlations existing among the three output fields (pump, signal, and idler) of a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold. By applying the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we show that strong tripartite continuous-variable entanglement is present in this well-known and simple system. Furthermore, since the entanglement is generated directly from a nonlinear process, the three entangled fields can have very different frequencies, opening the way for multicolored quantum information networks.Comment: 4 pages, 3 figure

    Non-Perturbative Renormalisation of the Lattice Δs=2\Delta s=2 Four-Fermion Operator

    Full text link
    We compute the renormalised four-fermion operator OΔS=2O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, OΔS=2O^{\Delta S=2} mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 163×3216^3 \times 32 lattice, at ÎČ=6.0\beta=6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element \_{\latt}.Comment: LaTeX, 16 pages, 2 postscript figure

    Electromagnetic corrections to leptonic decay rates of charged pseudoscalar mesons: finite-volume effects

    Full text link
    In Carrasco et al. we have recently proposed a method to calculate O(e2)O(e^2) electromagnetic corrections to leptonic decay widths of pseudoscalar mesons. The method is based on the observation that the infrared divergent contributions (that appear at intermediate stages of the calculation and that cancel in physical quantities thanks to the Bloch-Nordsieck mechanism) are universal, i.e. depend on the charge and the mass of the meson but not on its internal structure. In this talk we perform a detailed analysis of the finite-volume effects associated with our method. In particular we show that also the leading 1/L1/L finite-volume effects are universal and perform an analytical calculation of the finite-volume leptonic decay rate for a point-like meson

    Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD

    Full text link
    We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at O(α)O(\alpha) are universal, i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading non-universal, structure-dependent terms are of O(1/L2)O(1/L^2) (compared to the O(1/L3)O(1/L^3) leading non-universal corrections in the spectrum). We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final state lepton). The result can be included in the strategy proposed in Ref.\,\cite{Carrasco:2015xwa} for using lattice simulations to compute the decay widths at O(α)O(\alpha), with the remaining finite-volume effects starting at order O(1/L2)O(1/L^2). The methods developed in this paper can be generalised to other decay processes, most notably to semileptonic decays, and hence open the possibility of a new era in precision flavour physics
    • 

    corecore