13 research outputs found

    Comparative Analysis of Injection of Pyrolysis Oil from Plastics and Gasoline into the Engine Cylinder and Atomization by a Direct High-Pressure Injector

    Get PDF
    The article discusses the results of experimental studies on the course of pyrolysis oil injection through the high-pressure injector of a direct-injection engine. The pyrolysis oil used for the tests was derived from waste plastics (mainly high-density polyethylene—HDPE). This oil was then distilled. The article also describes the production technology of this pyrolysis oil on a laboratory scale. It presents the results of the chemical composition of the raw pyrolysis oil and the oil after the distillation process using GC-MS analysis. Fuel injection tests were carried out for the distilled pyrolysis oil and a 91 RON gasoline in order to perform a comparative analysis with the tested pyrolysis oil. In this case, the research was focused on the injected spray cloud analysis. The essential tested parameter was the Sauter Mean Diameter (SMD) of fuel droplets measured at the injection pressure of 400 bar. The analysis showed that the oil after distillation contained a significant proportion of light hydrocarbons similar to gasoline, and that the SMDs for distilled pyrolysis oil and gasoline were similar in the 7–9 µm range. In conclusion, it can be considered that distilled pyrolysis oil from HDPE can be used both as an additive for blending with gasoline in a spark-ignition engine or as a single fuel for a gasoline compression-ignition direct injection engine

    KNOCK AND COMBUSTION RATE INTERACTION IN A HYDROGEN FUELLED COMBUSTION ENGINE

    No full text
    Abstract The paper describes correlation between combustion knock intensity and combustion rate calculated as the heat release rate from combustion pressure traces of a hydrogen fuelled spark ignited engine. Unlike a gasoline spark ignited (SI

    Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend

    No full text
    Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol–butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol–butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol–butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by approximately 4% compared to gasoline 95. To summarize, the proposed glycerol–butanol blend can be directly used as a replacement for gasoline in internal combustion spark-ignition engines

    Impact of Pyrolysis Oil Addition to Ethanol on Combustion in the Internal Combustion Spark Ignition Engine

    No full text
    Thermal processing (torrefaction, pyrolysis, and gasification), as a technology can provide environmentally friendly use of plastic waste. However, it faces a problem with respect to its by-products. Pyrolysis oil obtained using this technology is seen as a substance that is extremely harmful for living creatures and that needs to be neutralized. Due to its relatively high calorific value, it can be considered as a potential fuel for internal combustion spark-ignition engines. In order make the combustion process effective, pyrolysis oil is blended with ethanol, which is commonly used as a fuel for flexible fuel cars. This article presents results from combustion tests conducted on a single-cylinder research engine at full load working at 600 rpm at a compression ratio of 9.5:1, and an equivalence ratio of 1. The analysis showed improvements in combustion and engine performance. It was found that, due to the higher calorific value of the blend, the engine possessed a higher indicated mean effective pressure. It was also found that optimal spark timing for this ethanol-pyrolysis oil blend was improved at a crank angle of 2–3° at 600 rpm. In summary, ethanol-pyrolysis oil blends at a volumetric ratio of 3:1 (25% pyrolysis oil) can successfully substitute ethanol in spark-ignition engines, particularly for vehicles with flexible fuel type

    Usage of Converter Gas as a Substitute Fuel for a Tunnel Furnace in Steelworks

    No full text
    Converter gas (BOFG) is a by-product of the steel manufacturing process in steelworks. Its usage as a substitute fuel instead of natural gas for fueling a metallurgical furnace seems to be reasonable due to potential benefits as follows: CO2 emission reduction into the ambient air and savings in purchasing costs of natural gas. Results of theoretical analysis focused on implementing converter gas as a fuel for feeding a tunnel furnace for either steel plate rolling, steel sheet hardening in its real working condition or both, are discussed. The analysis was focused on the combustion chemistry of the converter gas and its potential ecological and economic benefits obtained from converter gas usage to heat up steel in a tunnel furnace. Simulations of combustion were conducted using a skeletal chemical kinetic mechanism by Konnov. The directed relation graph with error propagation aided sensitivity analysis (DRGEPSA) method was used to obtain this skeletal kinetic mechanism. Finally, the model was validated on a real tunnel furnace fueled by natural gas. Regarding exhaust emissions, it was found that nitric oxide (NO) dropped down from 275 to 80 ppm when natural gas was replaced by converter gas. However, carbon dioxide emissions increased more than three times in this case, but there is no possibility of eliminating carbon dioxide from steel manufacturing processes at all. Economic analysis showed savings of 44% in fuel purchase costs when natural gas was replaced by converter gas. Summing up, the potential benefits resulting from substituting natural gas with converter gas led to the conclusion that converter gas is strongly recommended as fuel for a tunnel furnace in the steel manufacturing process. Practical application requires testing gas burners in terms of their efficiency, which should provide the same amount of energy supplied to the furnace when fed with converter gas

    Dual nature of hydrogen combustion knock

    No full text
    Combustion knock is abnormal combustion taking place in an internal combustion spark ignited engine. It might be particularly observed in the engine at the end of combustion when the air-fuel mixture residue can be self-ignited due to exceeding auto-ignition temperature of this mixture. However, while hydrogen is combusted the knock can also occur as a result of non-auto-ignited combustion events. Investigation on knock, presented in the manuscript, was conducted in a hydrogen fueled spark ignited single cylinder engine with variable compression ratio. To express in numbers intensity of the combustion knock the in-cylinder pressure pulsations were used as a credible metrics. On the basis of analysis of these pulsations the hydrogen knock was distinguished as light and heavy one depending on its origin. The light knock is generated by combustion instabilities, which are a source for generating pressure waves inside the engine cylinder. The heavy knock results from hydrogen auto-ignition at the end of combustion. Its intensity is several times higher in comparison to the light knock. These observations were additionally confirmed by analysis of heat release rate. Finally, the light and the heavy knock were characterized by average amplitude of the pulsations from the entire test series of hundreds and several thousands kPa, respectively. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved

    Thermal and Stress Properties of Briquettes from Virginia Mallow Energetic Crops

    No full text
    The article discusses the influence of briquetting/compaction parameters. This includes the effects of pressure and temperature on material density and the thermal conductivity of biomass compacted into briquette samples. Plant biomass mainly consists of lignin and cellulose which breaks down into simple polymers at the elevated temperature of 200 °C. Hence, the compaction pressure, compaction temperature, density, and thermal conductivity of the tested material play crucial roles in the briquetting and the torrefaction process to transform it into charcoal with a high carbon content. The tests were realized for samples of raw biomass compacted under pressure in the range from 100 to 1000 bar and at two temperatures of 20 and 200 °C. The pressure of 200 bar was concluded as the most economically viable in briquetting technology in the tests conducted. The conducted research shows a relatively good log relationship between the density of the compacted briquette and the compaction pressure. Additionally, higher compaction pressure resulted in higher destructive force of the compacted material, which may affect the lower abrasion of the material. Regarding heat transfer throughout the sample, the average thermal conductivity for the compacted biomass was determined at a value of 0.048 ± 0.001 W/(K∙m). Finally, the described methodology for thermal conductivity determination has been found to be a reliable tool, therefore it can be proposed for other applications

    Impact of EGR on combustion processes in a hydrogen fuelled SI engine

    No full text
    With concerns continuing to grow with respect to global warming from greenhouse gases, further regulations are being examined, developed and are expected for the emission of CO2 as an automobile exhaust. Renewable alternate fuels offer the potential to significantly reduce the CO2 impact of transportation. Hydrogen as a spark-ignition (SI) engine fuel provides this potential for significant CO2 reduction when generated from renewable resources. In addition, hydrogen has advantageous combustion properties including a wide flammable mixture range which facilitates lean burning and high dilution, fast combustion energy release and zero CO 2 emissions. However, the high burning rates and fast energy release can lead to excessive in-cylinder pressures and temperatures resulting in combustion knock and high NOx emissions at stoichiometric operation. This work examines external Exhaust Gas Recirculation (EGR) as a technique for the reduction of combustion knock and NOx emissions for stoichiometric operation and studies its impact on combustion rates, efficiency, NOx emissions, and other engine operation characteristics. Tests were performed on a single cylinder CFR engine at 900 rpm at a engine load of 410 kPa NIMEP while maintaining lambda (λ) at 1 (stoichiometric operation). Closed loop EGR was estimated and maintained via wide band oxygen sensors placed in the intake and exhaust manifolds. Tests were performed for compression ratios 8, 10 and 12 and various ignition timings. Combustion durations, engine efficiencies, NOx emissions were measured for varying values of EGR over these compression ratios. Comparative results for these tests are provided. The results show that even low levels of EGR resulted in longer combustion durations and reduced knock intensities. Efficiencies improved with low levels of EGR as we moved away from the knock limits, then reduced because of the longer combustion timings. EGR dilutes oxygen content in intake which finally reduces the combustion rate. This leads to lower in-cylinder peak temperature resulting in reduction of combustion knock and NOx emissions. EGR levels of 0 to 35% by mass were successfully applied

    Comparative Analysis of Injection of Pyrolysis Oil from Plastics and Gasoline into the Engine Cylinder and Atomization by a Direct High-Pressure Injector

    Get PDF
    The article discusses the results of experimental studies on the course of pyrolysis oil injection through the high-pressure injector of a direct-injection engine. The pyrolysis oil used for the tests was derived from waste plastics (mainly high-density polyethylene—HDPE). This oil was then distilled. The article also describes the production technology of this pyrolysis oil on a laboratory scale. It presents the results of the chemical composition of the raw pyrolysis oil and the oil after the distillation process using GC-MS analysis. Fuel injection tests were carried out for the distilled pyrolysis oil and a 91 RON gasoline in order to perform a comparative analysis with the tested pyrolysis oil. In this case, the research was focused on the injected spray cloud analysis. The essential tested parameter was the Sauter Mean Diameter (SMD) of fuel droplets measured at the injection pressure of 400 bar. The analysis showed that the oil after distillation contained a significant proportion of light hydrocarbons similar to gasoline, and that the SMDs for distilled pyrolysis oil and gasoline were similar in the 7–9 µm range. In conclusion, it can be considered that distilled pyrolysis oil from HDPE can be used both as an additive for blending with gasoline in a spark-ignition engine or as a single fuel for a gasoline compression-ignition direct injection engine

    In-cylinder combustion analysis of a SI engine fuelled with hydrogen enriched compressed natural gas (HCNG): engine performance, efficiency and emissions

    No full text
    The main objective of this study was to investigate the effect of hydrogen addition on spark ignition (SI) engine’s performance, thermal efficiency, and emission using variable composition hydrogen/CNG mixtures. The hydrogen was used in amounts of 0%, 20%, 40% by volume fraction at each engine speed and load. Experimental analysis was performed at engine speed of 1200 rpm, load of 120 Nm corresponding BMEP = 0.24 MPa, spark timing 26 CAD BTDC, and at engine speed of 2000 rpm, load of 350 Nm corresponding BMEP = 0.71 MPa, spark timing 22 CAD BTDC. The investigation results show that increasing amounts of hydrogen volume fraction contribute to shorten ignition delay time and decrease of the combustion duration, that also affect main combustion phase. The combustion duration analysis of mass fraction burned (MFB) was presented in the article. Decrease of CO2 in the exhaust gases was observed with increase of hydrogen amounts to the engine. However, nitrogen oxides (NOX) were found to increase with hydrogen addition if spark timing was not optimized according to hydrogen’s higher burning speed
    corecore