100 research outputs found
Better Feature Tracking Through Subspace Constraints
Feature tracking in video is a crucial task in computer vision. Usually, the
tracking problem is handled one feature at a time, using a single-feature
tracker like the Kanade-Lucas-Tomasi algorithm, or one of its derivatives.
While this approach works quite well when dealing with high-quality video and
"strong" features, it often falters when faced with dark and noisy video
containing low-quality features. We present a framework for jointly tracking a
set of features, which enables sharing information between the different
features in the scene. We show that our method can be employed to track
features for both rigid and nonrigid motions (possibly of few moving bodies)
even when some features are occluded. Furthermore, it can be used to
significantly improve tracking results in poorly-lit scenes (where there is a
mix of good and bad features). Our approach does not require direct modeling of
the structure or the motion of the scene, and runs in real time on a single CPU
core.Comment: 8 pages, 2 figures. CVPR 201
Median K-flats for hybrid linear modeling with many outliers
We describe the Median K-Flats (MKF) algorithm, a simple online method for
hybrid linear modeling, i.e., for approximating data by a mixture of flats.
This algorithm simultaneously partitions the data into clusters while finding
their corresponding best approximating l1 d-flats, so that the cumulative l1
error is minimized. The current implementation restricts d-flats to be
d-dimensional linear subspaces. It requires a negligible amount of storage, and
its complexity, when modeling data consisting of N points in D-dimensional
Euclidean space with K d-dimensional linear subspaces, is of order O(n K d D+n
d^2 D), where n is the number of iterations required for convergence
(empirically on the order of 10^4). Since it is an online algorithm, data can
be supplied to it incrementally and it can incrementally produce the
corresponding output. The performance of the algorithm is carefully evaluated
using synthetic and real data
- …