100 research outputs found

    Better Feature Tracking Through Subspace Constraints

    Full text link
    Feature tracking in video is a crucial task in computer vision. Usually, the tracking problem is handled one feature at a time, using a single-feature tracker like the Kanade-Lucas-Tomasi algorithm, or one of its derivatives. While this approach works quite well when dealing with high-quality video and "strong" features, it often falters when faced with dark and noisy video containing low-quality features. We present a framework for jointly tracking a set of features, which enables sharing information between the different features in the scene. We show that our method can be employed to track features for both rigid and nonrigid motions (possibly of few moving bodies) even when some features are occluded. Furthermore, it can be used to significantly improve tracking results in poorly-lit scenes (where there is a mix of good and bad features). Our approach does not require direct modeling of the structure or the motion of the scene, and runs in real time on a single CPU core.Comment: 8 pages, 2 figures. CVPR 201

    Median K-flats for hybrid linear modeling with many outliers

    Full text link
    We describe the Median K-Flats (MKF) algorithm, a simple online method for hybrid linear modeling, i.e., for approximating data by a mixture of flats. This algorithm simultaneously partitions the data into clusters while finding their corresponding best approximating l1 d-flats, so that the cumulative l1 error is minimized. The current implementation restricts d-flats to be d-dimensional linear subspaces. It requires a negligible amount of storage, and its complexity, when modeling data consisting of N points in D-dimensional Euclidean space with K d-dimensional linear subspaces, is of order O(n K d D+n d^2 D), where n is the number of iterations required for convergence (empirically on the order of 10^4). Since it is an online algorithm, data can be supplied to it incrementally and it can incrementally produce the corresponding output. The performance of the algorithm is carefully evaluated using synthetic and real data
    • …
    corecore