6 research outputs found

    Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization.

    No full text
    Ubiquinone, known as coenzyme Q, was shown to be the part of the metabolic pathways by Crane et al. in 1957. Its function as a component of the mitochondrial respiratory chain is well established. However, ubiquinone has recently attracted increasing attention with regard to its function, in the reduced form, as an antioxidant. In ubiquinone synthesis the para-hydroxybenzoate ring (which is the derivative of tyrosine or phenylalanine) is condensed with a hydrophobic polyisoprenoid side chain, whose length varies from 6 to 10 isoprene units depending on the organism. para-Hydroxybenzoate (PHB) polyprenyltransferase that catalyzes the condensation of PHB with polyprenyl diphosphate has a broad substrate specificity. Most of the genes encoding (all-E)-prenyltransferases which synthesize polyisoprenoid chains, have been cloned. Their structure is either homo- or heterodimeric. Genes that encode prenyltransferases catalysing the transfer of the isoprenoid chain to para-hydroxybenzoate were also cloned in bacteria and yeast. To form ubiquinone, prenylated PHB undergoes several modifications such as hydroxylations, O-methylations, methylations and decarboxylation. In eukaryotes ubiquinones were found in the inner mitochondrial membrane and in other membranes such as the endoplasmic reticulum, Golgi vesicles, lysosomes and peroxisomes. Still, the subcellular site of their biosynthesis remains unclear. Considering the diversity of functions of ubiquinones, and their multistep biosynthesis, identification of factors regulating their cellular level remains an elusive task

    Factors affecting oxygen-induced changes in the activity of CTP-dependent lipid kinases in yeast

    No full text

    Farnesyl diphosphate synthase; regulation of product specificity.

    No full text
    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis which supplies sesquiterpene precursors for several classes of essential metabolites including sterols, dolichols, ubiquinones and carotenoids as well as substrates for farnesylation and geranylgeranylation of proteins. It catalyzes the sequential head-to-tail condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate. The enzyme is a homodimer of subunits, typically having two aspartate-rich motifs with two sets of substrate binding sites for an allylic diphosphate and isopentenyl diphosphate per homodimer. The synthase amino-acid residues at the 4th and 5th positions before the first aspartate rich motif mainly determine product specificity. Hypothetically, type I (eukaryotic) and type II (eubacterial) FPPSs evolved from archeal geranylgeranyl diphosphate synthase by substitutions in the chain length determination region. FPPS belongs to enzymes encoded by gene families. In plants this offers the possibility of differential regulation in response to environmental changes or to herbivore or pathogen attack

    Subcellular compartmentation of dolichol taken up by mouse leukemia cells

    No full text

    Unique Ligand Selectivity of the GPR92/LPA5 Lysophosphatidate Receptor Indicates Role in Human Platelet Activation*

    No full text
    Lysophosphatidic acid (LPA) is a ligand for LPA1–3 of the endothelial differentiation gene family G-protein-coupled receptors, and LPA4–8 is related to the purinergic family G-protein-coupled receptor. Because the structure-activity relationship (SAR) of GPR92/LPA5 is limited and whether LPA is its preferred endogenous ligand has been questioned in the literature, in this study we applied a combination of computational and experimental site-directed mutagenesis of LPA5 residues predicted to interact with the headgroup of LPA. Four residues involved in ligand recognition in LPA5 were identified as follows: R2.60N mutant abolished receptor activation, whereas H4.64E, R6.62A, and R7.32A greatly reduced receptor activation. We also investigated the SAR of LPA5 using LPA analogs and other non-lysophospholipid ligands. SAR revealed that the rank order of agonists is alkyl glycerol phosphate > LPA > farnesyl phosphates ≫ N-arachidonoylglycine. These results confirm LPA5 to be a bona fide lysophospholipid receptor. We also evaluated several compounds with previously established selectivity for the endothelial differentiation gene receptors and found several that are LPA5 agonists. A pharmacophore model of LPA5 binding requirements was developed for in silico screening, which identified two non-lipid LPA5 antagonists. Because LPA5 transcripts are abundant in human platelets, we tested its antagonists on platelet activation and found that these non-lipid LPA5 antagonists inhibit platelet activation. The present results suggest that selective inhibition of LPA5 may provide a basis for future anti-thrombotic therapies
    corecore