29 research outputs found

    Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

    Get PDF
    Fluid production and injection in hydrocarbon and geothermal reservoirs generally results in induced seismic activity. In this paper we study the microseismic activity in a petroleum field in Oman. The microearthquake data we used are those collected by a five-station digital network in the field between 29 October 1999 and 18 June 2001. We relocated 405 high-quality microseismic events using P and S travel-times picked from waveform data by the global grid-search location method. The results reveal a complex seismic zone with a NE-SW trend. All events are located within a depth range of 0.5 to 3.5 km. Focal mechanisms of 10 events of magnitude greater than one are inverted using the wavelet-based waveform inversion method where the source parameters, data kernel, waveform data, and the inversion are all represented by wavelet expansions. The dominant style of focal mechanism is left-lateral strike-slip for events with focal depths less than 1.5 km, and dip-slip along an obliquely trending fault for those with focal depths greater than 2.0 km. The inferred focal plane is nearly vertical and has a strike of NE-SW, which is also consistent with the trend of seismicity. To determine the cause of the events, seismicity rate is correlated with gas production and fluid injection. The results show that event rate in the field is strongly correlated with gas production in the Natih formation.Massachusetts Institute of Technology. Earth Resources LaboratoryPetroleum Development Oma

    Induced seismicity analysis for reservoir characterization at a petroleum field in Oman

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2005.Includes bibliographical references.This thesis presents the analysis and interpretation of passive seismic data collected in a 20-month monitoring period. The investigation is divided into four studies, each focusing on a different aspect of the seismic data to infer the reservoir properties. First, I applied three different methods (the iterative linearized, nonlinear grid-search, and double-difference methods) to relocate 405 microearthquakes that occurred between October 1999 and June 2001 in a producing field in Oman. A numerical technique is applied to "collapse" the relocated hypocenters and to find the simplest structural interpretation consistent with the data. Comparing the methods, the applicability of waveform correlation methods such as the double-difference in this case is limited by the relatively large number of events with dissimilar waveforms. Unlike the iterative linearized method, the nonlinear grid-search method gives the best results with the smallest average rms error of the absolute locations because it avoids the local minimum problem.(cont.) The relocated hypocenters clearly delineate nearly vertical, northeast-southwest striking faults near the crest of the field, which is consistent with the graben fault system mapped by surface geologic surveys and reflection seismic interpretations. I also performed statistical tests to estimate location errors, and found that the station geometry is the major factor that limits the accuracy of focal depths. Secondly, this thesis presents a non-linear wavelet-based approach to linear waveform inversion of high-frequency seismograms for the estimation of a point source mechanism and its time function. For earthquake mechanism inversions, it is important to stabilize the problem by reducing the number of parameters to be determined. Commonly, overlapping isosceles triangles or boxcar functions are used for the parameterization of the moment tensor rate functions (MTRFs). Here, I develop a wavelet-based strategy that allows us to construct an adaptive, problem-dependent parameterization for the MTRFs employing fractional spline wavelets. Synthetic results demonstrate that the adaptive parameterization improves the numerical approximation to the model space and therefore, allows more accurate estimations of the MTRFs.(cont.) The waveform inversion is performed in the wavelet domain and leads to a multiresolution sparse matrix representation of the inverse problem. At each resolution level a regularized least-squares solution is obtained using the conjugate gradient method. The wavelet-based waveform inversion method has been applied successfully in three real- data examples: the April 22, 2002 Au Sable Forks, New York earthquake, the September 3, 2002 Yorba Linda, California earthquakes, and 11 M>1 microearthquakes in a producing field in Oman. In the Oman field, the dominant styles of focal mechanism are left-lateral strike-slip for events with focal depths less than 1.5 km, and dip-slip along an obliquely trending fault for those with focal depths greater than 2.0 km. Thirdly, the covariance matrix method of shear-wave splitting analysis is presented. Different from conventional methods that usually analyze only two horizontal components, this method processes all three components of the seismogram simultaneously, allowing not only orientation but also dip information of fractures to be resolved. Synthetic test results show that this method is stable even for high noise level.(cont.) The method is applied to the Oman microearthquake records that display distinctive shear-wave splitting and polarization directions. From the polarizations, I estimate the predominant subsurface fracture directions and dipping angles. From the time delays of the split wave I determine the fracture density distributions in the reservoir. Finally, I examine the spatio-temporal characteristics of the microseismicity in the producing reservoir. The frequency-magnitude distribution measured by the b-value is determined using the maximum likelihood method. I found that b-values are higher for events below the deeper Shuaiba oil reservoir than those above. Also, the feasibility of monitoring the temporal change of b-values is demonstrated. The analysis of production and injection well data shows that seismicity event rates in the field all strongly correlated with gas production from the shallower Natih Formation. Microseismicity, focal mechanisms, GPS analysis, and production / injection well data all suggest the NE- SW bounding graben fault system responds elastically to the gas-production-induced stresses. Normal faulting is enhanced in the reservoirs by the compaction related stresses acting on the graben fault system.by Edmond Kin-Man Sze.Ph.D

    Additive Manufacturing in Customized Medical Device

    Get PDF
    The long-established application of rapid prototyping in additive manufacturing (AM) has inspired a revolution in the medical industry into a new era, in which the clinical-driven development of the customized medical device is enabled. This transformation could only be sustainable if clinical concerns could be well addressed. In this work, we propose a workflow that addresses critical clinical concerns such as translation from medical needs to product innovation, anatomical conformation and execution, and validation. This method has demonstrated outstanding advantages over the traditional manufacturing approach in terms of form, function, precision, and clinical flexibility. We further propose a protocol for the validation of biocompatibility, material, and mechanical properties. Finally, we lay out a roadmap for AM-driven customized medical device innovation based on our experiences in Hong Kong, addressing problems of certification, qualification, characterization of three dimensional (3D) printed implants according to medical demands

    Treatment outcome and prognostic factor analysis in transplant-eligible Chinese myeloma patients receiving bortezomib-based induction regimens including the staged approach, PAD or VTD

    Get PDF
    BACKGROUND: We have reported promising outcomes using a staged approach, in which bortezomib/thalidomide/dexamethasone was used only in 14 patients with suboptimal response to VAD (vincristine/adriamycin/dexamethasone) before autologous stem cell transplantation (ASCT). Here we compared the outcomes of the staged approach with frontline PAD (bortezomib/doxorubicin/dexamethasone) or VTD (bortezomib/thalidomide/dexamethasone) induction, and analysed prognostic factors for outcome. PATIENTS AND METHODS: Ninety-one transplant-eligible Chinese patients received three induction regimens prior to ASCT [staged approach (N = 25), PAD (N = 31), VTD (N = 35)]. and received thalidomide maintenance for 2 years post-ASCT. RESULTS: 43 (47.3%) patients had International Staging System (ISS) III disease. By an intention-to-treat analysis, the overall CR/nCR rate were 37.4% post-induction, and 62.6% post-ASCT. Five-year overall (OS) and event-free (EFS) survivals were 66% and 45.1%. There was no difference of the post-induction CR/nCR rate, EFS or OS between patients induced by these three regimens. Moreover, ISS III disease did not affect CR/nCR rates. Multivariate analysis showed that ISS and post-ASCT CR/nCR impacted OS while ISS and post-induction CR/nCR impacted EFS. CONCLUSIONS: These three induction regimens produced comparable and favorable outcomes in myeloma. The unfavorable outcome of ISS stage III persisted despite upfront/early use of bortezomib. CR/nCR predicted favorable survivals

    High-Performance Piezoresistive MEMS Strain Sensor with Low Thermal Sensitivity

    Get PDF
    This paper presents the experimental evaluation of a new piezoresistive MEMS strain sensor. Geometric characteristics of the sensor silicon carrier have been employed to improve the sensor sensitivity. Surface features or trenches have been introduced in the vicinity of the sensing elements. These features create stress concentration regions (SCRs) and as a result, the strain/stress field was altered. The improved sensing sensitivity compensated for the signal loss. The feasibility of this methodology was proved in a previous work using Finite Element Analysis (FEA). This paper provides the experimental part of the previous study. The experiments covered a temperature range from −50 °C to +50 °C. The MEMS sensors are fabricated using five different doping concentrations. FEA is also utilized to investigate the effect of material properties and layer thickness of the bonding adhesive on the sensor response. The experimental findings are compared to the simulation results to guide selection of bonding adhesive and installation procedure. Finally, FEA was used to analyze the effect of rotational/alignment errors

    The Spill-Over Impact of the Novel Coronavirus-19 Pandemic on Medical Care and Disease Outcomes in Non-communicable Diseases: A Narrative Review

    Get PDF
    OBJECTIVES: The coronavirus-19 (COVID-19) pandemic has claimed more than 5 million lives worldwide by November 2021. Implementation of lockdown measures, reallocation of medical resources, compounded by the reluctance to seek help, makes it exceptionally challenging for people with non-communicable diseases (NCD) to manage their diseases. This review evaluates the spill-over impact of the COVID-19 pandemic on people with NCDs including cardiovascular diseases, cancer, diabetes mellitus, chronic respiratory disease, chronic kidney disease, dementia, mental health disorders, and musculoskeletal disorders. METHODS: Literature published in English was identified from PubMed and medRxiv from January 1, 2019 to November 30, 2020. A total of 119 articles were selected from 6,546 publications found. RESULTS: The reduction of in-person care, screening procedures, delays in diagnosis, treatment, and social distancing policies have unanimously led to undesirable impacts on both physical and psychological health of NCD patients. This is projected to contribute to more excess deaths in the future. CONCLUSION: The spill-over impact of COVID-19 on patients with NCD is just beginning to unravel, extra efforts must be taken for planning the resumption of NCD healthcare services post-pandemic

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Safety and Immunogenicity of a Booster Vaccination by CoronaVac or BNT162b2 in Previously Two-Dose Inactivated Virus Vaccinated Individuals with Negative Neutralizing Antibody

    No full text
    COVID-19 has swept across the globe since 2019 and repeated waves of infection have been caused by different variants of the original SARS-CoV-2 (wild type), with the Omicron and Delta variants having dominated recently. Vaccination is among the most important measures in the absence of widespread use of antivirals for prevention of morbidity and mortality. Inactivated virus vaccine has been abundantly used in many countries as the primary two-dose regimen. We aim to study the safety and immunogenicity of CoronaVac (three-dose inactivated virus vaccine) and the BNT162b2 (two-dose inactivated virus vaccine followed by an mRNA vaccine) booster. Both CoronaVac and BNT162b2 boosters are generally safe and have good immunogenicity against the wild type SARS-CoV-2 and the Delta variant with the majority having neutralizing antibodies (NAb) on day 30 and day 90. However, the BNT162b2 booster is associated with a much higher proportion of positive NAb against the Omicron variant. Only 8% of day 30 and day 90 samples post CoronaVac booster have NAb against the Omicron variant. In addition, more BNT162b2 booster recipients are having positive T-cell responses using interferon gamma release assay. In places using inactivated virus vaccine as the primary two-dose scheme, the heterologous mRNA vaccine booster is safe and more immunogenic against the Omicron variant and should be considered as a preferred option during the current outbreak
    corecore