37 research outputs found

    Correction of technical bias in clinical microarray data improves concordance with known biological information

    Get PDF
    The performance of gene expression microarrays has been well characterized using controlled reference samples, but the performance on clinical samples remains less clear. We identified sources of technical bias affecting many genes in concert, thus causing spurious correlations in clinical data sets and false associations between genes and clinical variables. We developed a method to correct for technical bias in clinical microarray data, which increased concordance with known biological relationships in multiple data sets

    Method for identification of tissue or organ localization of a tumour

    Get PDF
    The invention relates to a method for predicting the localization of a primary tumour, wherein said method comprises the use of genomic profile data, and wherein the method is capable of predicting the type of cancer by a classification score ranking among a variety of the possible tumour types.</p

    Parallel evolution of tumor subclones mimics diversity between tumors

    Get PDF
    Intratumour heterogeneity (ITH) may foster tumour adaptation and compromise the efficacy of personalized medicine approaches. The scale of heterogeneity within a tumour (intratumour heterogeneity) relative to genetic differences between tumours (intertumour heterogeneity) is unknown. To address this, we obtained 48 biopsies from eight stage III and IV clear cell renal cell carcinomas (ccRCCs) and used DNA copy-number analyses to compare biopsies from the same tumour with 440 single tumour biopsies from the Cancer Genome Atlas (TCGA). Unsupervised hierarchical clustering of TCGA and multi-region ccRCC samples revealed segregation of samples from the same tumour into unrelated clusters; 25% of multi-region samples appeared more similar to unrelated samples than to any other sample originating from the same tumour. We found that the majority of recurrent DNA copy number driver aberrations in single biopsies were not present ubiquitously in late-stage ccRCCs and were likely to represent subclonal events acquired during tumour progression. Such heterogeneous subclonal genetic alterations within individual tumours may impair the identification of robust ccRCC molecular subtypes classified by distinct copy number alterations and clinical outcomes. The co-existence of distinct subclonal copy number events in different regions of individual tumours reflects the diversification of individual ccRCCs through multiple evolutionary routes and may contribute to tumour sampling bias and impact upon tumour progression and clinical outcome. Copyright (c) 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore