172 research outputs found

    Thrombocytosis portends adverse prognostic significance in patients with stage II colorectal carcinoma

    Get PDF
    Thrombocytosis portends adverse prognostic significance in many types of cancers including ovarian and lung carcinoma. In this study, we determined the prevalence and prognostic significance of thrombocytosis (defined as platelet count in excess of 400 × 10 3/μl) in patients with colorectal cancer. We performed a retrospective analysis of 310 consecutive patients diagnosed at our Institution between 2004 and 2013. The patients (48.7% male and 51.3% female) had a mean age of 69.9 years (+/- 12.7 years) at diagnosis. Thrombocytosis was found in a total of 25 patients, with a higher incidence in those with stage III and IV disease (14.4% of patients). Although the mean platelet count increased with the depth of tumor invasion (pT), its values remained within normal limits in the whole patient cohort. No patient with stage I cancer (n=57) had elevated platelet count at diagnosis. By contrast, five of the 78 patients (6.4%) with stage II cancer showed thrombocytosis, and four of these patients showed early recurrence and/or metastatic disease, resulting in shortened survival (they died within one year after surgery). The incidence of thrombocytosis increased to 12.2% and 20.6%, respectively, in patients with stage III and IV disease. The overall survival rate of patients with thrombocytosis was lower than those without thrombocytosis in the stage II and III disease groups, but this difference disappeared in patients with stage IV cancer who did poorly regardless of their platelet count. We concluded that thrombocytosis at diagnosis indicates adverse clinical outcome in colorectal cancer patients with stage II or III disease. This observation is especially intriguing in stage II patients because the clinical management of these patients is controversial. If our data are confirmed in larger studies, stage II colon cancer patients with thrombocytosis may be considered for adjuvant chemotherapy

    Correction of technical bias in clinical microarray data improves concordance with known biological information

    Get PDF
    The performance of gene expression microarrays has been well characterized using controlled reference samples, but the performance on clinical samples remains less clear. We identified sources of technical bias affecting many genes in concert, thus causing spurious correlations in clinical data sets and false associations between genes and clinical variables. We developed a method to correct for technical bias in clinical microarray data, which increased concordance with known biological relationships in multiple data sets

    Claudin expression in pulmonary adenoid cystic carcinoma and mucoepidermoid carcinoma

    Get PDF
    Background: Although the expression of tight junction protein claudins (CLDNs) is well known in common histological subtypes of lung cancer, it has not been investigated in rare lung cancers. The aim of our study was to examine the expression of different CLDNs in pulmonary salivary gland tumors.Methods: 35 rare lung cancers including pathologically confirmed 12 adenoid cystic carcinomas (ACCs) and 23 mucoepidermoid carcinomas (MECs) were collected retrospectively. Immunohistochemical (IHC) staining was performed on formalin fixed paraffin embedded (FFPE) tumor tissues, and CLDN1, -2, -3, -4, -5, -7, and -18 protein expressions were analyzed. The levels of immunopositivity were determined with H-score. Certain pathological characteristics of ACC and MEC samples (tumor grade, presence of necrosis, presence of blood vessel infiltration, and degree of lymphoid infiltration) were also analyzed.Results: CLDN overexpression was observed in both tumor types, especially in CLDN2, -7, and -18 IHC. Markedly different patterns of CLDN expression were found for ACC and MEC tumors, especially for CLDN1, -2, -4, and -7, although none of these trends remained significant after correction for multiple testing. Positive correlations between expressions of CLDN2 and -5, CLDN3 and -4, and CLDN5 and -18 were also demonstrated. Tumors of never-smokers presented lower levels of CLDN18 than tumors of current smokers (p-value: 0.003).Conclusion: This is the first study to comprehensively describe the expression of different CLDNs in lung ACC and MEC. Overexpression of certain CLDNs may pave the way for targeted anti-claudin therapy in these rare histological subtypes of lung cancer

    Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization

    Get PDF
    DNA microarray measurements are susceptible to error caused by non-specific hybridization between a probe and a target (cross-hybridization), or between two targets (bulk-hybridization). Search algorithms such as BLASTN can quickly identify potentially hybridizing sequences. We set out to improve BLASTN accuracy by modifying the substitution matrix and gap penalties. We generated gene expression microarray data for samples in which 1 or 10% of the target mass was an exogenous spike of known sequence. We found that the 10% spike induced 2-fold intensity changes in 3% of the probes, two-third of which were decreases in intensity likely caused by bulk-hybridization. These changes were correlated with similarity between the spike and probe sequences. Interestingly, even very weak similarities tended to induce a change in probe intensity with the 10% spike. Using this data, we optimized the BLASTN substitution matrix to more accurately identify probes susceptible to non-specific hybridization with the spike. Relative to the default substitution matrix, the optimized matrix features a decreased score for A–T base pairs relative to G–C base pairs, resulting in a 5–15% increase in area under the ROC curve for identifying affected probes. This optimized matrix may be useful in the design of microarray probes, and in other BLASTN-based searches for hybridization partners

    An analysis of natural T cell responses to predicted tumor neoepitopes

    Get PDF
    Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive T-cell therapy may benefit from efficient identification and targeting of patient-specific neoepitopes. However, current neoepitope prediction methods based on sequencing and predictions of epitope processing and presentation result in a low rate of validation, suggesting that the determinants of peptide immunogenicity are not well understood. We gathered published data on human neopeptides originating from single amino acid substitutions for which T cell reactivity had been experimentally tested, including both immunogenic and non-immunogenic neopeptides. Out of 1,948 neopeptide-HLA (human leukocyte antigen) combinations from 13 publications, 53 were reported to elicit a T cell response. From these data, we found an enrichment for responses among peptides of length 9. Even though the peptides had been pre-selected based on presumed likelihood of being immunogenic, we found using NetMHCpan-4.0 that immunogenic neopeptides were predicted to bind significantly more strongly to HLA compared to non-immunogenic peptides. Investigation of the HLA binding strength of the immunogenic peptides revealed that the vast majority (96%) shared very strong predicted binding to HLA and that the binding strength was comparable to that observed for pathogen-derived epitopes. Finally, we found that neopeptide dissimilarity to self is a predictor of immunogenicity in situations where neo- and normal peptides share comparable predicted binding strength. In conclusion, these results suggest new strategies for prioritization of mutated peptides, but new data will be needed to confirm their value.Fil: Bjerregaard, Anne-Mette. Technical University of Denmark; DinamarcaFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Barra, Carolina M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Hadrup, Sine Reker. Technical University of Denmark; DinamarcaFil: Szallasi, Zoltan. Technical University of Denmark; Dinamarca. Harvard Medical School; Estados UnidosFil: Eklund, Aron Charles. Technical University of Denmark; Dinamarc

    Jetset: selecting the optimal microarray probe set to represent a gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interpretation of gene expression microarrays requires a mapping from probe set to gene. On many Affymetrix gene expression microarrays, a given gene may be detected by multiple probe sets, which may deliver inconsistent or even contradictory measurements. Therefore, obtaining an unambiguous expression estimate of a pre-specified gene can be a nontrivial but essential task.</p> <p>Results</p> <p>We developed scoring methods to assess each probe set for specificity, splice isoform coverage, and robustness against transcript degradation. We used these scores to select a single representative probe set for each gene, thus creating a simple one-to-one mapping between gene and probe set. To test this method, we evaluated concordance between protein measurements and gene expression values, and between sets of genes whose expression is known to be correlated. For both test cases, we identified genes that were nominally detected by multiple probe sets, and we found that the probe set chosen by our method showed stronger concordance.</p> <p>Conclusions</p> <p>This method provides a simple, unambiguous mapping to allow assessment of the expression levels of specific genes of interest.</p

    Evaluation of Microarray Preprocessing Algorithms Based on Concordance with RT-PCR in Clinical Samples

    Get PDF
    BACKGROUND Several preprocessing algorithms for Affymetrix gene expression microarrays have been developed, and their performance on spike-in data sets has been evaluated previously. However, a comprehensive comparison of preprocessing algorithms on samples taken under research conditions has not been performed. METHODOLOGY/PRINCIPAL FINDINGS We used TaqMan RT-PCR arrays as a reference to evaluate the accuracy of expression values from Affymetrix microarrays in two experimental data sets: one comprising 84 genes in 36 colon biopsies, and the other comprising 75 genes in 29 cancer cell lines. We evaluated consistency using the Pearson correlation between measurements obtained on the two platforms. Also, we introduce the log-ratio discrepancy as a more relevant measure of discordance between gene expression platforms. Of nine preprocessing algorithms tested, PLIER+16 produced expression values that were most consistent with RT-PCR measurements, although the difference in performance between most of the algorithms was not statistically significant. CONCLUSIONS/SIGNIFICANCE Our results support the choice of PLIER+16 for the preprocessing of clinical Affymetrix microarray data. However, other algorithms performed similarly and are probably also good choices
    corecore