103 research outputs found
LIGHT SCATTERING IN RESEARCH AND QUALITY CONTROL OF DEUTERIUM DEPLETED WATER FOR PHARMACEUTICAL APPLICATION
Objective: Development of a methodology for measuring the deuterium content in water for pharmaceutical purposes by laser light scattering based on ideas about the cluster structure of water.
Methods: Samples of industrially manufactured drinking water from different manufacturers with varying deuterium content from 10 ppm to 115 ppm. For the titration of laboratory samples of deuterium depleted water in increments of 5 ppm the following reagents were used: Water, deuterium-depleted (≤1 ppm (D2O, Aldrich, USA); Deuterium oxide/Heavy water/Water-d2 (99.9 atom % D, Aldrich, USA); water Milli-Q (specific resistance 18.2 µS·sm at 25 оС, ТОС ≤ 5 ppb, Merck Millipore). The determination of deuterium content in samples of industrially manufactured water and water obtained in a laboratory manner was carried out by the method of low-angle laser light scattering (LALLS) at the Mastersizer (Malvern Instruments) analyzer and using a working measuring tool–laser dispersion meter/MDL («Cluster-1», Russia/Ukraine). The statistical methods–packages OriginPro®9.
Results: It was found that the content of isotopologies in water leads to physicochemical water’s properties changes and morphology changes of giant heterogeneous clusters (GHC). The results of low-angle laser light scattering (LALLS) in the water samples under investigation showed the dependence of the water GHC "dispersibility" expressed in the differentiation of curves of the volume size distribution ("size spectra"), the volume concentration, w%, the laser obscuration values (I ‒I0) as the function of the water isotopic composition variations. The laser diffraction method results correlate with two-dimensional (2D) multi-descriptor mathematical analysis.
Conclusion: When identifying deuterium depleted water, it should be considered not only the indicators that determine its pharmacopoeial quality, but also the D/H ratio, because even small changes in the natural isotopic composition of water lead to significant biological effects. Our proposed approach using laser diffraction in combination with mathematical apparatus of (2D) multi-descriptor laser scattering analysis makes possible the exact calculation of individual signs of deuterium depleted water as the pharmaceutical object of study
PREPARATION, CHARACTERIZATION AND STUDIES OF PHYSICOCHEMICAL AND BIOLOGICAL PROPERTIES OF DRUGS COATING LACTOSE IN FLUIDIZED BEDS
Objective: Study physicochemical properties and activity of biotechnological drugs coating lactose particles in fluidized beds for the development of a prospective approach of their identification.
Methods: Lactose monohydrate as pharmaceutical excipient; affinity-purified polyclonal rabbit antibodies to recombinant human interferon-gamma as a drug substance; Pilotlab fluid bed apparatus was used for lactose powder saturation with solutions of pharmaceutical substances to the point of granulation (pelletizing); inverse light scattering method (2D-LS) for analysis of micron vibrations frequency spectra of samples surfaces for light intensity distribution in time by values of d1, d2, d3 primary descriptors; low angel and dynamic laser light scattering (LALLS, DLS) methods for distribution of lactose-water (LW) supramolecular complexes into volume fractions (micron "size spectra"), using the Master Sizer 2000 instrument and Zeta Sizer Nano ZS instrument in the nanoscale; Spirotox method for research of biological activity to determine the activation energy (Ea) values of cell death in solutions of tested samples.
Results: Changes in 2D-LS scattering time on sample surfaces, described by topological descriptors, made it possible to clearly differentiate the intact lactose from fluidized samples by specific corridors in coordinates di=F(t). The calculated activation energy (Ea) values of cell biosensor death process in solutions of drugs coating lactose allow to characterize the biological activity of it in the initial (by Ea increase) and activated state (by Ea decrease) after the creation of intra-laboratory transmucosal conditions. A unique dimensional spectrum of LW complexes in the nanoscale range was obtained by DLS. The differences between samples in the distribution of LW complexes in the size range from 1 µm to 125 µm was showed by LALLS.
Conclusion: The developed approach, including Сhemometrics, laser and biotesting methods can be used for qualitative the analysis tasks as well as for analytical control of the fluidization process in cases where identifiable pharmaceutical substances are not distinguishable by traditional analytical methods
SLOW QUASIKINETIC CHANGES IN WATER-LACTOSE COMPLEXES DURING STORAGE
Objective: To investigate kinetic changes in the spectral characteristics by Fourier Transform Infrared spectroscopy (FTIR) of water-lactose complexes (SMC), derived during the manufacturing process of the drug, containing release-active forms of antibodies.
Methods: lactose monohydrate substance, saturated with release-active forms of affinity-purified polyclonal rabbit antibodies to recombinant human interferon-gamma (RA forms of Abs); tablets produced from this substance by direct compression after the addition of excipients (microcrystalline cellulose, magnesium stearate). Powdered and tableted placebo samples saturated with technologically processed water or phosphate-buffered saline, as well as with intact ethanol were used as control. Kinetic changes in SMC were studied using an Agilent Cary 630 FTIR spectrophotometer with a diamond ATR accessory (Agilent Technologies, USA). We used the method of X-ray fluorescence spectroscopy (EDX-7000 Shimadzu energy dispersive X-ray fluorescence spectrometer) to track changes in the fluorescence signal at certain wavelengths. The range of measured elements–11Na-92U.
Results: Control of some technological characteristics of the obtained active substance (moisture, flowability) and dosage form (mean mass, disintegration rate) was used as indirect indicators of quality, but they did not allow reliably distinguishing intact lactose from the saturated one. Long-period oscillations on FTIR spectra were characteristic for all types of samples; oscillations occur at approximately two-week intervals; S/N indices were more stable for samples of RA forms of Abs than for placebo samples. On some days, the substance saturated with RA forms of Abs significantly differed from the intact lactose powder. The kinetics of the X-ray fluorescence intensity at certain wavelengths indicates the possibility of a periodic cooperative trigger transition of the system. Reversible conformational transitions are observed for powders on the 30th and 130th days (Kα 3.313 keV). For tablets at Kα 3.313 keV and Kα 1.740 keV small changes were visualized on those days (100–110th day) when hysteresis phenomena were recorded in the IR spectra of these samples.
Conclusion: As a result, the evidence for a long-period dramatic conformational mobility of the water-lactose complex was obtained. Based on the data on the semiannual kinetics of IR spectra, a universal criterion for the identity of lactose powder saturated with RA forms of Abs was obtained. Also, it was confirmed that the lactose conformation state was changed by saturation with RA forms of Abs
POLARIMETRY AND DYNAMIC LIGHT SCATTERING IN QUALITY CONTROL OF CARDIOTONIC AND HYPOTENSIVE TINCTURES
Objective: To substantiate the possibility of using polarimetry to control the quality of tinctures as an additional pharmacopoeial method.
Methods: The polarimetric method (POL-1/2, Atago, Japan, the measurement accuracy of±0.002 °) was used to measure the optical activity (α °) of motherwort, valerian and hawthorn tinctures. The dynamic light scattering method (DLS; Zetasizer Nano ZS, Malvern, UK) was used to assess the stability of alcoholic and aqueous dilutions of tinctures according to the intensity of dynamic light scattering dependent on the size (d, nm) of the dispersed phase particles and the values of the electrokinetic potential (ξ, mV).
Results: For the first time in this investigation, the polarimetry approach was proposed to evaluate the cardiotonic and hypotensive tinctures' quality and for their identification. Valerian tincture, dilution 1:40,-0.10°<α°<-0.89°; motherwort, tincture-dilution 1:10,-0.10°<α°<-2.21°; hawthorn, tincture without dilution,-0.76°<α°<-1.55°-these are the acceptable ranges of optical activity (α°) of their alcohol dilutions. Beyond these intervals, the use of the polarimetric approach is impossible. Values of optical activity below 0.1 correspond to too low a content of optically active components. Tinctures with optical activity above the upper value of the interval were unstable dispersed systems with low values of the electrokinetic potential (|ξ|≪25mV) and micron particle sizes. Reference tinctures were made from raw materials (Leonurus cardiaca L.) to verify the results. The quality parameters: optical activity (α°), spectra of dynamic light scattering by intensity, volume, and number ("I-d"; "V-d"; "N-d"), electrokinetic potential (ξ) values, and photon pulse count per second (Count Rate, kcps) corresponded to the results obtained for pharmaceutical dosage forms.
Conclusion: The permissible intervals of optical activity (α°) of their ethanol dilutions, as well as their relationships with the particle size of the dispersed phase and the values of the electrokinetic potential, were established for the first time to evaluate the quality of tinctures. The obtained results show that polarimetry can be recommended as an additional pharmacopoeial quality control method for tinctures
APPLICATION OF MATHEMATICAL MODELING AND PHYSICO-CHEMICAL ANALYSIS METHODS IN THE PREDICTION OF BIOLOGICAL ACTIVITY AND QUALITY CONTROL OF GOSSYPOL DERIVATIVES
Objective: The purpose of this work was to evaluate in silico biological activity profiles of real and virtual molecular structures of gossypol derivatives and to develop methods of Physico-chemical analysis to control their quality.
Methods: Substance of gossypol-acetic acid (GAA) and 14 virtual derivatives; PASS and ChemicDescript QSAR methods; low angle and dynamic laser light scattering (LALLS, DLS) methods; IR Spectroscopy–Cary 630 Fourier Transform IR Spectrometer, UV spectrometry–Cary-60 spectrophotometer, Optical microscopy (Altami BIO 2 microscope); Spirotox method for a sample’s biological activity.
Results: A distance-based topological Balaban index (J) was successfully selected by ChemicDescript analysis; the Pa meaning by PASS Online program showed maximum (from 0.8 to 0.9) variations of antitumor and antiandrogenic and minimum of antiviral activities of GAA derivatives (Pa<0.5) despite the existing literature data. Microscopy and DLS methods demonstrated the values of high powder dispersion d=0.8 nm and weak stability of colloidal particles =-0.9 mV. According to UV data =42.4±0.8 (100 ml·g-1·cm-1) at λmax=380 nm. The LALLS method determined the GAA dissolution rate constant in ethanol: k=0.041±0.004 s-1. The calculated activation energy values of cell biosensor death process in 1 mmol solution of GAA in N,N-DMF: °bsEa=174.36±0.45 kJ·mol-1 in comparison with the solvent medium: °bsEa=213±1.55 kJ·mol-1
Conclusion: The developed approach of chemometric, laser and biotesting methods can be used for the identification of biologically active properties, as well as for qualitative analysis within the development of the standard for the pharmaceutical substance of natural polyphenols
DEUTERIUM AS A TOOL FOR CHANGING THE PROPERTIES OF PHARMACEUTICAL SUBSTANCES (REVIEW)
The review is devoted to the influence of the hydrogen isotope–deuterium on biological models of organisms and the biological activity of pharmaceutical substances.
The positions of the influence of deuterium on the properties of active pharmaceutical ingredients and excipients are examined from different perspectives. The first position reflects an increase in the kinetic isotope effect (KIE) in processes involving known pharmaceutical substances in aqueous solutions with a deuterium/protium ratio (D/H) below natural. For the first time, the dose-response diagram shows the identity of deuterium with essential trace elements, when a deficiency and excess of an element reduces the organism's vitality. Improved kinetic characteristics are demonstrated for the molecular and organism levels of different hierarchical gradations. In particular, they consist in the possibility of increasing the dissolution rate of substances by influencing the carbohydrate mutarotation processes and the optical activity of chiral substances, increased accumulation of essential elements in medicinal plants and other processes associated with a possible change in metabolic pathways in the cell and the organism as a whole.
The second considered position of the influence of deuterium is associated with the use of deuterated substances–new compounds or obtained by substitution of protium in known protium analogues. The KIE is presented, which is expressed in a decrease in the biotransformation rate as a result of deuteration, it allows predicting a rapid development of the new direction in the development of drugs. Having an identical therapeutic effect, deuterated analogs provide improved pharmacokinetic characteristics, such as reduced toxicity, blocked epimerization of optically active substances, and a change in the mechanisms of biotransformation. The obtained results make it possible to predict the mechanisms of the effect of deuterium on the biochemical transformations of pharmaceutical substances in the organism
ASCORBIС ACID DEGRADATION IN N, N-DIMETHYLFORMAMIDE SOLUTIONS
Objective: Investigate the mechanisms of L-ascorbic acid transforтmation and formation of coloured enamines in N, N-dimethyl-formamide solutions.
Methods: An automatic polarimeter Atago POL-1/2 was used for polarimetric investigation. Electronic spectra were recorded by UV-spectrometer Cary 60 (Agilent). The statistical analysis was carried out using the OriginPro 9.1 packages.
Results: The Biot’s law violation was found in below 0.1% solutions of L-ascorbic acid (AA) in N, N-dimethylformamide (DMF). During the day, the specific rotation of 1% AA solution varied from+37 to-1.0. Gradually, the solution acquired the red colour, and its intensity depended on the AA concentration. Spectrophotometrically, it was shown that after 15 min AA was absent in the n·10-3% solutions. The decomposition followed the first-order kinetics (k1=1.83·10-2с-1). At the same time, new absorption bands appeared at 273, 390, 533 nm. Model solutions containing dimethylamine (DMA) had a similar spectrum, and the intensity of the absorption bands increased in proportion to the concentration of DMA.
Conclusion: The results show that the first step in the decomposition of ascorbic acid AA in DMF follows first-order kinetics. Numerous decomposition products are optically active compounds and reverse the sign of the optical rotation of the solution. The water resulting from the decomposition of AA is involved in the hydrolysis of the solvent. The hydrolysis product, the secondary amine DMA, interacts with the carbonyl groups of the AA decomposition products to form coloured enamines. Magnesium (II) accelerates the formation of coloured products
POLARIMETRIC RESEARCH OF PHARMACEUTICAL SUBSTANCES IN AQUEOUS SOLUTIONS WITH DIFFERENT WATER ISOTOPOLOGUES RATIO
Objective: Methodology development for quality control of optically active pharmaceutical substances based on water isotopologues.
Methods: Solutions of L-ascorbic acid, glucose, galactose and valine stereoisomers were prepared using deuterium depleted water (DDW-«light» water, D/H=4 ppm), natural deionized high-ohmic water (BD, D/H=140 ppm), heavy water (99.9% D2O). The optical rotation was observed using an automatic polarimeter Atago POL-1/2. The size distribution of giant heterogeneous clusters (GHC) of water was recorded by low angle laser light scattering (LALLS) method.
Results: The infringement of Biot's Law was found for solutions of ascorbic acid, expressed in the absence of a constant value of the specific optical rotation  at a concentration of below 0.1%, depends on the D/H ratio. The inequality was established in absolute values of optical rotation for L-and D-isomers of valine in solutions with different ratios of hydrogen isotopologues. The mutarotation of glucose confirmed the first-order kinetics, and the activation energies were statistically distinguishable for BD and DDW. The mutarotation of the natural galactose D-isomer proceeded with a lower energy consumption compared to the L-isomer. In heavy water, the mutarotation of monosaccharides had different kinetic mechanisms. Polarimetric results correlated with the number and size of GHC, which confirmed the possibility of chiral solvent structures induction by optically active pharmaceutical substances.
Conclusion: In the optically active pharmaceutical substances quality control there should be considered the contribution of induced chiral GHC of water to the optical rotation value that depends on the isotopic D/H ratio, the substance nature and the form of its existence at a given pH
Creation of a new system of express air quality control in sea costal cities
With a problem it is abnormal high air pollution in a coastal zone (in comparison with continental industrial cities), increases in patients pulmonary and allergic diseases have already faced New York, Valetteis (an island Malta), a number of cities, including resort, the Mediterranean coast of Spain. One of the basic sources of toxic substances in air of seaside cities is sea the aerosol. For the purpose of air pollution forecasting in FGU ГОИН the system of monitoring of quality of air is created, a measuring basis of system is the measuring instrument of dispersion developed by us laser (ИДЛ-1)
Chelation of Zinc with Biogenic Amino Acids: Description of Properties Using Balaban Index, Assessment of Biological Activity on Spirostomum Ambiguum Cellular Biosensor, Influence on Biofilms and Direct Antibacterial Action
The complexation of biogenic molecules with metals is the widespread strategy in screening for new pharmaceuticals with improved therapeutic and physicochemical properties. This paper demonstrates the possibility of using simple QSAR modeling based on topological descriptors for chelates study. The presence of a relationship between the structure (J) and lipophilic properties (logP) of zinc complexes with amino acids, where two molecules coordinate the central atom through carboxyl oxygen and amino group nitrogen, and thus form a double ring structure, was predicted. Using a cellular biosensor model for Gly, Ala, Met, Val, Phe and their complexes Zn(AA)2, we experimentally confirmed the existence of a direct relationship between logP and biological activity (Ea). The results obtained using topological analysis, Spirotox method and microbiological testing allowed us to assume and prove that the chelate complex of zinc with methionine has the highest activity of inhibiting bacterial biofilms, while in aqueous solutions it does not reveal direct antibacterial effect
- …