5,094 research outputs found
Neutron spectroscopic factors of Ni isotopes from transfer reactions
177 neutron spectroscopic factors for nickel isotopes have been extracted by
performing a systematic analysis of the angular distributions measured from
(d,p) transfer reactions. A subset of the extracted spectroscopic factors are
compared to predictions of large-basis shell models in the full pf model space
using the GXPF1A effective interaction, and the (f5/2, p3/2, p1/2, g9/2) model
space using the JJ4PNA interaction. For ground states, the predicted
spectroscopic factors using the GXPF1A effective interaction in the full pf
model space agree very well with the experimental values, while predictions
based on several other effective interactions and model spaces are about 30%
higher than the experimental values. For low-energy excited states (<3.5 MeV),
the agreement between the extracted spectroscopic factors and shell model
calculations is not better than a factor of two.Comment: 18 pages, 4 figures, 2 tables. accepted for publication in PR
Site percolation and random walks on d-dimensional Kagome lattices
The site percolation problem is studied on d-dimensional generalisations of
the Kagome' lattice. These lattices are isotropic and have the same
coordination number q as the hyper-cubic lattices in d dimensions, namely q=2d.
The site percolation thresholds are calculated numerically for d= 3, 4, 5, and
6. The scaling of these thresholds as a function of dimension d, or
alternatively q, is different than for hypercubic lattices: p_c ~ 2/q instead
of p_c ~ 1/(q-1). The latter is the Bethe approximation, which is usually
assumed to hold for all lattices in high dimensions. A series expansion is
calculated, in order to understand the different behaviour of the Kagome'
lattice. The return probability of a random walker on these lattices is also
shown to scale as 2/q. For bond percolation on d-dimensional diamond lattices
these results imply p_c ~ 1/(q-1).Comment: 11 pages, LaTeX, 8 figures (EPS format), submitted to J. Phys.
Planetary Science Goals for the Spitzer Warm Era
The overarching goal of planetary astronomy is to deduce how the present collection of objects found in our Solar System were formed from the original material present in the proto-solar nebula. As over two hundred exo-planetary systems are now known, and multitudes more are expected, the Solar System represents the closest and best system which we can study, and the only one in which we can clearly resolve individual bodies other than planets. In this White Paper we demonstrate how to use Spitzer Space Telescope InfraRed Array Camera Channels 1 and 2 (3.6 and 4.5 µm) imaging photometry with large dedicated surveys to advance our knowledge of Solar System formation and evolution. There are a number of vital, key projects to be pursued using dedicated large programs that have not been pursued during the five years of Spitzer cold operations. We present a number of the largest and most important projects here; more will certainly be proposed once the warm era has begun, including important observations of newly discovered objects
Critical holes in undercooled wetting layers
The profile of a critical hole in an undercooled wetting layer is determined
by the saddle-point equation of a standard interface Hamiltonian supported by
convenient boundary conditions. It is shown that this saddle-point equation can
be mapped onto an autonomous dynamical system in a three-dimensional phase
space. The corresponding flux has a polynomial form and in general displays
four fixed points, each with different stability properties. On the basis of
this picture we derive the thermodynamic behaviour of critical holes in three
different nucleation regimes of the phase diagram.Comment: 18 pages, LaTeX, 6 figures Postscript, submitted to J. Phys.
In vivo metabolism of unsaturated fatty acids in Sepia officinalis hatchlings
Versión del editor2,041
Complex-Temperature Singularities in the Ising Model. III. Honeycomb Lattice
We study complex-temperature properties of the uniform and staggered
susceptibilities and of the Ising model on the honeycomb
lattice. From an analysis of low-temperature series expansions, we find
evidence that and both have divergent singularities at the
point (where ), with exponents
. The critical amplitudes at this
singularity are calculated. Using exact results, we extract the behaviour of
the magnetisation and specific heat at complex-temperature
singularities. We find that, in addition to its zero at the physical critical
point, diverges at with exponent , vanishes
continuously at with exponent , and vanishes
discontinuously elsewhere along the boundary of the complex-temperature
ferromagnetic phase. diverges at with exponent
and at (where ) with exponent , and
diverges logarithmically at . We find that the exponent relation
is violated at ; the right-hand side is 4
rather than 2. The connections of these results with complex-temperature
properties of the Ising model on the triangular lattice are discussed.Comment: 22 pages, latex, figures appended after the end of the text as a
compressed, uuencoded postscript fil
HPV-associated lung cancers: an international pooled analysis
Human papillomavirus (HPV) is the etiologic risk factor for cervical cancer. Some studies have suggested an association with a subset of lung tumors, but the etiologic link has not been firmly established. We performed an international pooled analysis of cross-sectional studies (27 datasets, n = 3249 patients) to evaluate HPV DNA prevalence in lung cancer and to investigate viral presence according to clinical and demographic characteristics. HPV16/18 were the most commonly detected, but with substantial variation in viral prevalence between geographic regions. The highest prevalence of HPV16/18 was observed in South and Central America, followed by Asia, North America and Europe (adjusted prevalence rates = 22, 5, 4 and 3%, respectively). Higher HPV16 prevalence was noted in each geographic region compared with HPV18, except in North America. HPV16/18-positive lung cancer was less likely observed among White race (adjusted odds ratio [OR] = 0.33, 95% confidence interval [CI] = 0.12-0.90), whereas no associations were observed with gender, smoking history, age, histology or stage. Comparisons between tumor and normal lung tissue show that HPV was more likely to be present in lung cancer rather than normal lung tissues (OR = 3.86, 95% CI = 2.87-5.19). Among a subset of patients with HPV16-positive tumors, integration was primarily among female patients (93%, 13/14), while the physical status in male cases (N = 14) was inconsistent. Our findings confirm that HPV DNA is present in a small fraction of lung tumors, with large geographic variations. Further comprehensive analysis is needed to assess whether this association reflects a causal relationship
The Gibbs-Thomson formula at small island sizes - corrections for high vapour densities
In this paper we report simulation studies of equilibrium features, namely
circular islands on model surfaces, using Monte-Carlo methods. In particular,
we are interested in studying the relationship between the density of vapour
around a curved island and its curvature-the Gibbs-Thomson formula. Numerical
simulations of a lattice gas model, performed for various sizes of islands,
don't fit very well to the Gibbs-Thomson formula. We show how corrections to
this form arise at high vapour densities, wherein a knowledge of the exact
equation of state (as opposed to the ideal gas approximation) is necessary to
predict this relationship. Exploiting a mapping of the lattice gas to the Ising
model one can compute the corrections to the Gibbs-Thomson formula using high
field series expansions. We also investigate finite size effects on the
stability of the islands both theoretically and through simulations. Finally
the simulations are used to study the microscopic origins of the Gibbs-Thomson
formula. A heuristic argument is suggested in which it is partially attributed
to geometric constraints on the island edge.Comment: 27 pages including 7 figures, tarred, gzipped and uuencoded. Prepared
using revtex and espf.sty. To appear in Phys. Rev.
Narratives of self and identity in women's prisons: stigma and the struggle for self-definition in penal regimes
A concern with questions of selfhood and identity has been central to penal practices in women's prisons, and to the sociology of women's imprisonment. Studies of women's prisons have remained preoccupied with women prisoners’ social identities, and their apparent tendency to adapt to imprisonment through relationships. This article explores the narratives of women in two English prisons to demonstrate the importance of the self as a site of meaning for prisoners and the central place of identity in micro-level power negotiations in prisons
- …