385 research outputs found
Fluctuations and Pinch-Offs Observed in Viscous Fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal several phenomena that were not observed in previous experiments. At low
flow rates, growing fingers undergo width fluctuations that intermittently
narrow the finger as they evolve. The magnitude of these fluctuations is
proportional to Ca^{-0.64}, where Ca is the capillary number, which is
proportional to the finger velocity. This relation holds for all aspect ratios
studied up to the onset of tip instabilities. At higher flow rates, finger
pinch-off and reconnection events are observed. These events appear to be
caused by an interaction between the actively growing finger and suppressed
fingers at the back of the channel. Both the fluctuation and pinch-off
phenomena are robust but not explained by current theory.Comment: 6 pages, 3 figures; to appear in Proceedings of the Seventh
Experimental Chaos Conferenc
Fluctuations and Pinch-Offs Observed in Viscous Fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal several phenomena that were not observed in previous experiments. At low
flow rates, growing fingers undergo width fluctuations that intermittently
narrow the finger as they evolve. The magnitude of these fluctuations is
proportional to Ca^{-0.64}, where Ca is the capillary number, which is
proportional to the finger velocity. This relation holds for all aspect ratios
studied up to the onset of tip instabilities. At higher flow rates, finger
pinch-off and reconnection events are observed. These events appear to be
caused by an interaction between the actively growing finger and suppressed
fingers at the back of the channel. Both the fluctuation and pinch-off
phenomena are robust but not explained by current theory.Comment: 6 pages, 3 figures; to appear in Proceedings of the Seventh
Experimental Chaos Conferenc
Continuum simulations of shocks and patterns in vertically oscillated granular layers
We study interactions between shocks and standing-wave patterns in vertically
oscillated layers of granular media using three-dimensional, time-dependent
numerical solutions of continuum equations to Navier-Stokes order. We simulate
a layer of grains atop a plate that oscillates sinusoidally in the direction of
gravity. Standing waves form stripe patterns when the accelerational amplitude
of the plate's oscillation exceeds a critical value. Shocks also form with each
collision between the layer and the plate; we show that pressure gradients
formed by these shocks cause the flow to reverse direction within the layer.
This reversal leads to an oscillatory state of the pattern that is subharmonic
with respect to the plate's oscillation. Finally, we study the relationship
between shocks and patterns in layers oscillated at various frequencies and
show that the pattern wavelength increases monotonically as the shock strength
increases.Comment: 12 pages, 9 figure
Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations
We study the onset of patterns in vertically oscillated layers of
frictionless dissipative particles. Using both numerical solutions of continuum
equations to Navier-Stokes order and molecular dynamics (MD) simulations, we
find that standing waves form stripe patterns above a critical acceleration of
the cell. Changing the frequency of oscillation of the cell changes the
wavelength of the resulting pattern; MD and continuum simulations both yield
wavelengths in accord with previous experimental results. The value of the
critical acceleration for ordered standing waves is approximately 10% higher in
molecular dynamics simulations than in the continuum simulations, and the
amplitude of the waves differs significantly between the models. The delay in
the onset of order in molecular dynamics simulations and the amplitude of noise
below this onset are consistent with the presence of fluctuations which are
absent in the continuum theory. The strength of the noise obtained by fit to
Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in
fluid convection experiments, and is comparable to the noise found in
experiments with oscillated granular layers and in recent fluid experiments on
fluids near the critical point. Good agreement is found between the mean field
value of onset from the Swift-Hohenberg fit and the onset in continuum
simulations. Patterns are compared in cells oscillated at two different
frequencies in MD; the layer with larger wavelength patterns has less noise
than the layer with smaller wavelength patterns.Comment: Published in Physical Review
Extraction of coherent structures in a rotating turbulent flow experiment
The discrete wavelet packet transform (DWPT) and discrete wavelet transform
(DWT) are used to extract and study the dynamics of coherent structures in a
turbulent rotating fluid. Three-dimensional (3D) turbulence is generated by
strong pumping through tubes at the bottom of a rotating tank (48.4 cm high,
39.4 cm diameter). This flow evolves toward two-dimensional (2D) turbulence
with increasing height in the tank. Particle Image Velocimetry (PIV)
measurements on the quasi-2D flow reveal many long-lived coherent vortices with
a wide range of sizes. The vorticity fields exhibit vortex birth, merger,
scattering, and destruction. We separate the flow into a low-entropy
``coherent'' and a high-entropy ``incoherent'' component by thresholding the
coefficients of the DWPT and DWT of the vorticity fields. Similar thresholdings
using the Fourier transform and JPEG compression together with the Okubo-Weiss
criterion are also tested for comparison. We find that the DWPT and DWT yield
similar results and are much more efficient at representing the total flow than
a Fourier-based method. Only about 3% of the large-amplitude coefficients of
the DWPT and DWT are necessary to represent the coherent component and preserve
the vorticity probability density function, transport properties, and spatial
and temporal correlations. The remaining small amplitude coefficients represent
the incoherent component, which has near Gaussian vorticity PDF, contains no
coherent structures, rapidly loses correlation in time, and does not contribute
significantly to the transport properties of the flow. This suggests that one
can describe and simulate such turbulent flow using a relatively small number
of wavelet or wavelet packet modes.Comment: experimental work aprox 17 pages, 11 figures, accepted to appear in
PRE, last few figures appear at the end. clarifications, added references,
fixed typo
Fluctuations in viscous fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal finger width fluctuations that were not observed in previous
experiments, which had lower aspect ratios and higher capillary numbers Ca.
These fluctuations intermittently narrow the finger from its expected width.
The magnitude of these fluctuations is described by a power law, Ca^{-0.64},
which holds for all aspect ratios studied up to the onset of tip instabilities.
Further, for large aspect ratios, the mean finger width exhibits a maximum as
Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a
few additional minor results. (Figures unchanged.) 4 pages, 3 figures.
Submitted to PRE Rapi
Symmetries and novel universal properties of turbulent hydrodynamics in a symmetric binary fluid mixture
We elucidate the universal properties of the nonequilibrium steady states
(NESS) in a driven symmetric binary fluid mixture, an example of active
advection, in its miscible phase. We use the symmetries of the equations of
motion to establish the appropriate form of the structure functions which
characterise the statistical properties of the NESS of a driven symmetric
binary fluid mixture. We elucidate the universal properties described by the
scaling exponents and the amplitude ratios. Our results suggest that these
exponents and amplitude ratios vary continuously with the degree of
crosscorrelations between the velocity and the gradient of the concentration
fields. Furthermore, we demonstrate, in agreement with Celani et al, Phys. Rev.
Lett., 89, 234502 (2002, that the conventional structure functions as used in
passive scalar turbulence studies exhibit only simple scaling in the problem of
symmetric binary fluid mixture even in the weak concentration limit. We also
discuss possible experimental verifications of our results.Comment: To appear in JSTAT (letters) (2005
Kink-induced transport and segregation in oscillated granular layers
We use experiments and molecular dynamics simulations of vertically
oscillated granular layers to study horizontal particle segregation induced by
a kink (a boundary between domains oscillating out of phase). Counter-rotating
convection rolls carry the larger particles in a bidisperse layer along the
granular surface to a kink, where they become trapped. The convection
originates from avalanches that occur inside the layer, along the interface
between solidified and fluidized grains. The position of a kink can be
controlled by modulation of the container frequency, making possible systematic
harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
Synchronisation in Coupled Sine Circle Maps
We study the spatially synchronized and temporally periodic solutions of a
1-d lattice of coupled sine circle maps. We carry out an analytic stability
analysis of this spatially synchronized and temporally periodic case and obtain
the stability matrix in a neat block diagonal form. We find spatially
synchronized behaviour over a substantial range of parameter space. We have
also extended the analysis to higher spatial periods with similar results.
Numerical simulations for various temporal periods of the synchronized
solution, reveal that the entire structure of the Arnold tongues and the
devil's staircase seen in the case of the single circle map can also be
observed for the synchronized coupled sine circle map lattice. Our formalism
should be useful in the study of spatially periodic behaviour in other coupled
map lattices.Comment: uuencoded, 1 rextex file 14 pages, 3 postscript figure
Breathing Spots in a Reaction-Diffusion System
A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is
observed to bifurcate to an oscillating spot when a control parameter is
increased beyond a critical value. Further increase of the control parameter
leads to the collapse and disappearance of the spot. Analysis of a bistable
activator-inhibitor model indicates that the observed behavior is a consequence
of interaction of the front with the boundary near a parity breaking front
bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and
http://t7.lanl.gov/People/Aric
- …