2 research outputs found

    PCR-based identification and strain typing of Pichia anomala using the ribosomal intergenic spacer region IGS1

    Get PDF
    Frequent outbreaks of Pichia anomala fungaemia in paediatric patients have warranted the development of a rapid identification system for this organism. This study describes a specific PCR-based method targeting the rRNA gene intergenic spacer region 1 (IGS1) for rapid identification of Pichia anomala isolates and characterization at the strain level. These methods of species identification and strain typing were used on 106 isolates of Pichia anomala (77 from a previously described outbreak and 29 isolated post-outbreak from the same hospital). Using conventional morphological and biochemical methods, 11 strains isolated during the outbreak were misidentified as P. anomala. BLAST analysis of sequences of internal transcribed spacer (ITS) regions of rRNA genes confirmed that they were Pichia guilliermondii (eight isolates) and Debaryomyces hansenii (three isolates). Strain typing of Pichia anomala isolates confirmed the previous finding of a point-source outbreak. The results suggest that IGS sequences and their polymorphisms could be exploited for similar typing methods in other organisms

    Comparison of ITS and IGS1 regions for strain typing of clinical and non-clinical isolates of Pichia anomala

    Get PDF
    Pichia anomala is an emerging nosocomial pathogen and there is a need for methods that distinguish between different P. anomala strains. In the typing of several clinical as well as non-clinical P. anomala strains, the sequence variation of the internal transcribed spacer (ITS) was found to be inadequate for typing purposes. The intergenic spacer 1 (IGS1) region of the rDNA of several P. anomala strains was therefore investigated in detail. The IGS1 region (which varied from 1213 to 1231 bp in length) was interspersed with repeats and had more variation than the ITS regions. Comparative analysis in cases where analysis by the ITS was ambiguous clearly revealed the IGS1 region to be a more discriminatory tool in the typing of P. anomala strains
    corecore