231 research outputs found

    Utilizing Mechanical Strain to Mitigate the Intrinsic Loss Mechanisms in Oscillating Metal Nanowires

    Get PDF
    We utilize classical molecular dynamics to study energy dissipation (the Q factors) of doubly clamped copper nanowire nanoresonators undergoing flexural oscillations. We find that the application of tensile strain effectively mitigates both the intrinsic surface and thermal losses, with improvements in Q by a factor of 3-10 across a range of operating temperatures. We also find that the nanowire Q factors are not dependent on the surface area to volume ratio, but instead their aspect ratio, and that the Q factors exhibit a 1/T0.70 dependence on the temperature T that is independent of strain.open26

    Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators

    Get PDF
    We utilize classical molecular dynamics to study the effects of intrinsic, interlayer friction between graphene monolayers, as well as extrinsic attachment or clamping strength between graphene and a model silicon substrate on the energy dissipation (Q -factors) of oscillating graphene nanoresonators. Both interlayer friction and attachment effects are found to significantly degrade the graphene Q -factors, with an increase in energy dissipation with increasing temperature, while both effects are found to be strongly dependent on the strength of the van der Waals interactions, either between adjacent layers of graphene or between graphene and the underlying substrate.open271

    Transition-pathway models of atomic diffusion on fcc metal surfaces. II. Stepped surfaces

    Get PDF
    Action-derived molecular dynamics was demonstrated in the companion paper (Paper I) to be effective for the analysis of atomic surface diffusion. The method is here applied to the search of minimum-energy paths and the calculation of activation energy barriers in more complex single-adatom diffusion processes on fcc metal surfaces containing steps. Diverse diffusion routes are investigated along and across one- or two-layer steps on different surface orientations. Fundamental diffusion mechanisms near the step corners are also studied. Results are analyzed in relation to the island growth mechanism, which is of importance to surface nanoengineering.open221

    Configurational force on a dynamic dislocation with localized oscillation

    Get PDF
    Upon employing the conservation theorem and continuum theory, the configurational force on a singularity, or a defect, is given by a pathindependent integral called the J integral. According to the continuum elasticity theory, the J integral around a steadily moving dislocation is equal to the Peach-Koehler force acting on the dislocation and is independent of the integration path. However, using a discrete lattice dynamics method, we theoretically prove that the J integral is not path-independent in practice even under uniform motion. This is because of the generation of phonons during the dislocation motion. In general, phonons are generated upon localized oscillation of the dislocation, and they dissipate energy from the dislocation core; consequently, a drag force is produced. As the drag force disturbs the dislocation motion, the J integral around the moving dislocation is smaller than that around a stationary one, and its deviation from the stationary one corresponds to the drag force. In this study, we analytically derive the drag force for each oscillation mode by adopting dislocation-phonon coordinates. We classify the oscillation mode simply as symmetric or anti-symmetric after assuming the dislocation to be a localized defect having a finite core width. Consequently, the drag force is numerically calculated upon consideration of the discrete nature of the dislocation core. In particular, our study reveals that the anti-symmetric oscillation mode mainly contributes to the drag force in the limit of high dislocation velocity. Furthermore, we show that the resulting relation between the drag force and dislocation frequency can reproduce the dislocation velocity-stress curve. This work is expected to contribute to mesoand macro-scale plasticity when the material is loaded under extreme conditions or transient dislocation motion can be assumed

    On the effective plate thickness of monolayer graphene from flexural wave propagation

    Get PDF
    We utilize classical molecular dynamics to study flexural, or transverse wave propagation in monolayer graphene sheets and compare the resulting dispersion relationships to those expected from continuum thin plate theory. In doing so, we determine that regardless of the chirality for monolayer graphene, transverse waves exhibit a dispersion relationship that corresponds to the lowest order antisymmetric (A0) mode of wave propagation in a thin plate with plate thickness of h = 0.104 nm. Finally, we find that the achievable wave speeds in monolayer graphene are found to exceed those reported previously for single walled carbon nanotubes, while the frequency of wave propagation in the graphene monolayer is found to reach the terahertz range, similar to that of carbon nanotubes.open9

    Adatom-assisted structural transformations of fullerenes

    Get PDF
    Microscopic mechanism of autocatalytic structural transformations of fullerenes is investigated by the action-derived molecular dynamics. Dynamic pathways and the corresponding activation energies are obtained for the Stone-Wales transformation in fullerene and the fullerene coalescence, under the presence of extra carbon atoms. The adatom-assisted Stone-Wales transformation is proved to be a highly probable process unit for the structural transformations and annealing treatments of carbon-based graphitic networks. The complex processes of adatom-assisted fullerene coalescence, yielding very low activation energies, are presented.open271

    EFFECTS OF MO, CR, AND V ADDITIONS ON TENSILE AND CHARPY IMPACT PROPERTIES OF API X80 PIPELINE STEELS

    Get PDF
    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.X1126sciescopu

    Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes

    Get PDF
    To achieve the urgent requirement for high volumetric energy density in lithium-ion batteries, alloy-based anodes have been spotlighted as next-generation alternatives. Nonetheless, for the veritable accomplishment with regards to high-energy demand, alloy-based anodes must be evaluated considering several crucial factors that determine volumetric capacity. In particular, the electrode swelling upon cycling must be contemplated if these anodes are to replace conventional graphite anodes in terms of volumetric capacity. Herein, we propose macropore-coordinated graphite-silicon composite by incorporating simulation and mathematical calculation of numerical values from experimental data. This unique structure exhibits minimized electrode swelling comparable to conventional graphite under industrial electrode fabrication conditions. Consequently, this hybrid anode, even with high specific capacity (527 mAh g(-1)) and initial coulombic efficiency (93%) in half-cell, achieves higher volumetric capacity (493.9 mAh cm(-3)) and energy density (1825.7 Wh L-1) than conventional graphite (361.4 mAh cm(-3) and 1376.3 Wh L-1) after 100 cycles in the full-cell configuration

    Note: A simple-structured anode exchangeable X-ray tube

    Get PDF
    An anode exchangeable X-ray tube of very simple structure was developed. Aluminum, chromium, and copper anode targets were prepared and used to investigate X-ray spectra. X-ray images of a thin wood plate were taken using those targets. The measured energies of the characteristic X-rays of each target agreed well with the presented results. The difference of resolution and brightness of each image was found based on MTF values and intensities. The developed X-ray tube can give high durability, and higher quality X-ray images of an arbitrary object by exchanging anode targets.open1

    Coalescence and T-junction formation of carbon nanotubes: Action-derived molecular dynamics simulations

    Get PDF
    The mechanisms of coalescence and T-junction formation of carbon nanotubes are analyzed using action-derived molecular dynamics. The control of kinetic energy in addition to the total energy leads to the determination of the minimum-energy atomistic pathway for each of these processes. Particularly, we find that the unit merging process of two carbon nanotubes consists of four sequential generalized Stone-Wales transformations occurring in four hexagon-heptagon pairs around the jointed part. In addition, we show that a single carbon atom may play the role of an autocatalyst, which significantly reduces the global activation energy barrier of the merging process. For T junction formation, two different models are chosen for simulation. One contains defects near the point of junction formation, while the other consists of two perfect nanotubes plus two additional carbon atoms. Our results indicate that the coalescence and junction formation of nanotubes may occur more easily than theoretically predicted in the presence of additional carbon atoms at moderate temperatures.open9
    • โ€ฆ
    corecore