655 research outputs found

    A Practical Searchable Symmetric Encryption Scheme for Smart Grid Data

    Full text link
    Outsourcing data storage to the remote cloud can be an economical solution to enhance data management in the smart grid ecosystem. To protect the privacy of data, the utility company may choose to encrypt the data before uploading them to the cloud. However, while encryption provides confidentiality to data, it also sacrifices the data owners' ability to query a special segment in their data. Searchable symmetric encryption is a technology that enables users to store documents in ciphertext form while keeping the functionality to search keywords in the documents. However, most state-of-the-art SSE algorithms are only focusing on general document storage, which may become unsuitable for smart grid applications. In this paper, we propose a simple, practical SSE scheme that aims to protect the privacy of data generated in the smart grid. Our scheme achieves high space complexity with small information disclosure that was acceptable for practical smart grid application. We also implement a prototype over the statistical data of advanced meter infrastructure to show the effectiveness of our approach

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Full text link
    Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224x224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102x faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.Comment: This manuscript is the accepted version for IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015. See Changelo

    ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

    Full text link
    We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13x actual speedup over AlexNet while maintaining comparable accuracy

    Deep Residual Learning for Image Recognition

    Full text link
    Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.Comment: Tech repor
    • …
    corecore