79,935 research outputs found

    Binomial coefficients, Catalan numbers and Lucas quotients

    Full text link
    Let pp be an odd prime and let a,ma,m be integers with a>0a>0 and m≢0(modp)m \not\equiv0\pmod p. In this paper we determine ∑k=0pa−1(2kk+d)/mk\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k mod p2p^2 for d=0,1d=0,1; for example, ∑k=0pa−1(2kk)mk≡(m2−4mpa)+(m2−4mpa−1)up−(m2−4mp)(modp2),\sum_{k=0}^{p^a-1}\frac{\binom{2k}k}{m^k}\equiv\left(\frac{m^2-4m}{p^a}\right)+\left(\frac{m^2-4m}{p^{a-1}}\right)u_{p-(\frac{m^2-4m}{p})}\pmod{p^2}, where (−)(-) is the Jacobi symbol, and {un}n⩾0\{u_n\}_{n\geqslant0} is the Lucas sequence given by u0=0u_0=0, u1=1u_1=1 and un+1=(m−2)un−un−1u_{n+1}=(m-2)u_n-u_{n-1} for n=1,2,3,…n=1,2,3,\ldots. As an application, we determine ∑0<k<pa, k≡r(modp−1)Ck\sum_{0<k<p^a,\, k\equiv r\pmod{p-1}}C_k modulo p2p^2 for any integer rr, where CkC_k denotes the Catalan number (2kk)/(k+1)\binom{2k}k/(k+1). We also pose some related conjectures.Comment: 24 pages. Correct few typo

    Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission

    Full text link
    We revisit the back-action of emitted photons on the motion of the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure

    Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being satisfactory. Prompted by the discrepancy, we proposed the use of spectral representation to analyze more realistic cell models. We adopted a shell-spheroidal model to analyze the effects of the cell membrane. It is found that the dielectric property of the cell membrane has only a minor effect on the dispersion magnitude ratio and the characteristic frequency ratio. We further included the effect of rotation of dipole induced by an external electric field, and solved the dipole-rotation spheroidal model in the spectral representation. Good agreement between theory and experiment has been obtained.Comment: 19 pages, 5 eps figure

    Decay of Loschmidt Echo Enhanced by Quantum Criticality

    Full text link
    We study the transition of a quantum system SS from a pure state to a mixed one, which is induced by the quantum criticality of the surrounding system EE coupled to it. To characterize this transition quantitatively, we carefully examine the behavior of the Loschmidt echo (LE) of EE modelled as an Ising model in a transverse field, which behaves as a measuring apparatus in quantum measurement. It is found that the quantum critical behavior of EE strongly affects its capability of enhancing the decay of LE: near the critical value of the transverse field entailing the happening of quantum phase transition, the off-diagonal elements of the reduced density matrix describing SS vanish sharply.Comment: 4 pages, 3 figure
    • …
    corecore