2 research outputs found

    Provenance of Chinese Loess: Evidence from Stable Lead Isotope

    No full text
    Twenty-seven samples of typical loess and paleosol strata collected in nine different regions of the Chinese Loess Plateau (CLP) were fractionated into PM(1.0), PM(2.5), PM(10) and Total Suspended Particulates (TSP) (particulate matter with aerodynamic diameters less than 1.0, 2.5, 10 and 30 mu m, respectively) by a resuspension chamber at the Desert Research Institute (DRI; Reno, NV, United States). The amounts and isotope ratios of lead (Pb) were quantified in the loess samples. Our size-segregated analysis demonstrated that the Pb isotopic composition in the loess-paleosol deposits was preserved after grain-size sorting and that therefore the isotope ratio can serve as a proxy for source tracing. A similar pattern of Pb isotope ratios was observed for sediment collected from potential source regions and the loess samples suggested that the Gobi and deserts in southern Mongolia and northern China are major sources for the deposits in the CLP. No significant deviation of Pb isotope amount was found between the nine samples of loess and paleosol strata, implying the stability of loess sources during the glacial and interglacial regime.</p

    Temporal and spatial distribution of trace metals in sediments from the northern Yellow Sea coast, China: implications for regional anthropogenic processes

    No full text
    Surface sediment samples from 17 sites in the Yantai coastal area, the northern Yellow Sea, China, combined with a sediment core were employed for geochemical and chronological analyses for the purpose of characterizing the temporal and spatial distribution of trace metals in sediments and their implications for anthropogenic processes. The results indicated that the spatial distribution of trace metals (Cr, Ni, Ti, Pb, As, Zn, Mn and Cu) in surface sediments was significantly contributed by the sewage discharges along the Yantai coast, and the coastal currents played a major role for transporting the pollutants to offshore. The temporal concentrations of trace metals in the sediment core based on the chronology determined by a combination of radionuclide Cs-137 and 210 Pb activity demonstrated that trace metal concentrations increased step-wisely over the last ca. 100 years, corresponding to the intensity of anthropogenic processes in the Yantai area. The high levels of Cu and As before the late 1970s indicated the agricultural emission from the application of pesticides. While, all the high-trace metal concentrations since the early 1980s could be seen as diagnostic indictors of increasing industrialization, urbanization and sewage discharge in the Yantai area. Although the potential ecological risk evaluation of trace metals in the coastal area suggests low-potential ecological risk at present, some trace metals, such as As and Pb need particular attention due to their slight contamination.</p
    corecore