86,812 research outputs found

    Ground-state phases of rung-alternated spin-1/2 Heisenberg ladder

    Full text link
    The ground-state phase diagram of Heisenberg spin-1/2 system on a two-leg ladder with rung alternation is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges several different ground states are stabilized depending on the ratio between exchanges along legs and rungs. For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both linear and quadratic low energy dispersions and ground state magnetization continuously changing with system parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states with additional topological order are suggested to be realized

    The overmassive black hole in NGC 1277: new constraints from molecular gas kinematics

    Full text link
    We report the detection of CO(1-0) emission from NGC 1277, a lenticular galaxy in the Perseus Cluster. NGC 1277 has previously been proposed to host an overmassive black hole (BH) compared to the galaxy bulge luminosity (mass), based on stellar-kinematic measurements. The CO(1-0) emission, observed with the IRAM Plateau de Bure Interferometer (PdBI) using both, a more compact (2.9-arcsec resolution) and a more extended (1-arcsec resolution) configuration, is likely to originate from the dust lane encompassing the galaxy nucleus at a distance of 0.9 arcsec (~320 pc). The double-horned CO(1-0) profile found at 2.9-arcsec resolution traces 1.5×108 M⊙1.5\times 10^8\ M_\odot of molecular gas, likely orbiting in the dust lane at $\sim 550\ \mathrm{km\ s^{-1}},whichsuggestsatotalenclosedmassof, which suggests a total enclosed mass of \sim 2\times 10^{10}\ M_\odot.At1−arcsecresolution,theCO(1−0)emissionappearsspatiallyresolvedalongthedustlaneineast−westdirection,thoughatalowsignal−to−noiseratio.Inagreementwiththepreviousstellar−kinematicmeasurements,theCO(1−0)kinematicsisfoundtobeconsistentwithan. At 1-arcsec resolution, the CO(1-0) emission appears spatially resolved along the dust lane in east-west direction, though at a low signal-to-noise ratio. In agreement with the previous stellar-kinematic measurements, the CO(1-0) kinematics is found to be consistent with an \sim 1.7\times 10^{10}\ M_\odotBHforastellarmass−to−lightratioof BH for a stellar mass-to-light ratio of M/L_V=6.3,whilealessmassiveBHof, while a less massive BH of \sim 5\times 10^{9}\ M_\odotispossiblewhenassumingalarger is possible when assuming a larger M/L_V=10$. While the molecular gas reservoir may be associated with a low level of star formation activity, the extended 2.6-mm continuum emission is likely to originate from a weak AGN, possibly characterized by an inverted radio-to-millimetre spectral energy distribution. Literature radio and X-ray data indicate that the BH in NGC 1277 is also overmassive with respect to the Fundamental Plane of BH activity.Comment: 15 pages, 13 figures; accepted for publication in MNRAS on 20 January 2016; updated version including minor changes and note added in proo

    Realizing quantum controlled phase-flip gate through quantum dot in silicon slow-light photonic crystal waveguide

    Full text link
    We propose a scheme to realize controlled phase gate between two single photons through a single quantum dot in slow-light silicon photonic crystal waveguide. Enhanced Purcell factor and beta factor lead to high gate fidelity over broadband frequencies compared to cavity-assisted system. The excellent physical integration of this silicon photonic crystal waveguide system provides tremendous potential for large-scale quantum information processing.Comment: 9 pages, 3 figure

    Electron-doped phosphorene: A potential monolayer superconductor

    Full text link
    We predict by first-principles calculations that the electron-doped phosphorene is a potential BCS-like superconductor. The stretching modes at the Brillouin-zone center are remarkably softened by the electron-doping, which results in the strong electron-phonon coupling. The superconductivity can be introduced by a doped electron density (n2Dn_{2D}) above 1.3×10141.3 \times10^{14} cm−2^{-2}, and may exist over the liquid helium temperature when n2D>2.6×1014n_{2D}>2.6 \times10^{14} cm−2^{-2}. The maximum critical temperature is predicted to be higher than 10 K. The superconductivity of phosphorene will significantly broaden the applications of this novel material

    Search for cold and hot gas in the ram pressure stripped Virgo dwarf galaxy IC3418

    Full text link
    We present IRAM 30m sensitive upper limits on CO emission in the ram pressure stripped dwarf Virgo galaxy IC3418 and in a few positions covering HII regions in its prominent 17 kpc UV/Ha gas-stripped tail. In the central few arcseconds of the galaxy, we report a possible marginal detection of about 1x10^6 M_sun of molecular gas (assuming a Galactic CO-to-H_2 conversion factor) that could correspond to a surviving nuclear gas reservoir. We estimate that there is less molecular gas in the main body of IC3418, by at least a factor of 20, than would be expected from the pre-quenching UV-based star formation rate assuming the typical gas depletion timescale of 2 Gyr. Given the lack of star formation in the main body, we think the H_2-deficiency is real, although some of it may also arise from a higher CO-to-H_2 factor typical in low-metallicity, low-mass galaxies. The presence of HII regions in the tail of IC3418 suggests that there must be some dense gas; however, only upper limits of < 1x10^6 M_sun were found in the three observed points in the outer tail. This yields an upper limit on the molecular gas content of the whole tail < 1x10^7 M_sun, which is an amount similar to the estimates from the observed star formation rate over the tail. We also present strong upper limits on the X-ray emission of the stripped gas in IC3418 from a new Chandra observation. The measured X-ray luminosity of the IC3418 tail is about 280 times lower than that of ESO 137-001, a spiral galaxy in a more distant cluster with a prominent ram pressure stripped tail. Non-detection of any diffuse X-ray emission in the IC3418 tail may be due to a low gas content in the tail associated with its advanced evolutionary state and/or due to a rather low thermal pressure of the surrounding intra-cluster medium.Comment: 15 pages, 11 figures, A&A accepte
    • …
    corecore