33 research outputs found
Nonclassical Fields and the Nonlinear Interferometer
We demonstrate several new results for the nonlinear interferometer, which
emerge from a formalism which describes in an elegant way the output field of
the nonlinear interferometer as two-mode entangled coherent states. We clarify
the relationship between squeezing and entangled coherent states, since a weak
nonlinear evolution produces a squeezed output, while a strong nonlinear
evolution produces a two-mode, two-state entangled coherent state. In between
these two extremes exist superpositions of two-mode coherent states manifesting
varying degrees of entanglement for arbitrary values of the nonlinearity. The
cardinality of the basis set of the entangled coherent states is finite when
the ratio is rational, where is the nonlinear strength. We
also show that entangled coherent states can be produced from product coherent
states via a nonlinear medium without the need for the interferometric
configuration. This provides an important experimental simplification in the
process of creating entangled coherent states.Comment: 21 pages, 2 figure
Dissipative and Non-dissipative Single-Qubit Channels: Dynamics and Geometry
Single-qubit channels are studied under two broad classes: amplitude damping
channels and generalized depolarizing channels. A canonical derivation of the
Kraus representation of the former, via the Choi isomorphism is presented for
the general case of a system's interaction with a squeezed thermal bath. This
isomorphism is also used to characterize the difference in the geometry and
rank of these channel classes. Under the isomorphism, the degree of decoherence
is quantified according to the mixedness or separability of the Choi matrix.
Whereas the latter channels form a 3-simplex, the former channels do not form a
convex set as seen from an ab initio perspective. Further, where the rank of
generalized depolarizing channels can be any positive integer upto 4, that of
amplitude damping ones is either 2 or 4. Various channel performance parameters
are used to bring out the different influences of temperature and squeezing in
dissipative channels. In particular, a noise range is identified where the
distinguishability of states improves inspite of increasing decoherence due to
environmental squeezing.Comment: 12 pages, 4 figure
A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12
Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales
Surface engineering with lasers: An application to co-base materials
Electron microscopy, mechanical hardness measurements and wear experiments were carried out on laser coated cobalt based Stellite alloys. It was found that with optimum laser parameters, a poreless coating with a hardness of 11.3 GPa can be attained. Detailed analysis indicates that solid solution hardening by Tungsten and Chromium, dislocation-dislocation interactions, impenetrable particle hardening due to the metal-carbides and due to the Co3W precipitates are responsible for its high hardness. In accordance with theoretical predictions, cutting of the DO19 ordered Co3W precipitates was not observed. All these microstructural features contribute in their own way to the mechanical properties, on the basis of which the hardness could be explained rather well. An important parameter which influences these mechanical parameters is the volumetric dilution with the substrate. Ii is this aspect together with the well defined and controllable processing parameters which make the laser coating of Stellite powders superior to other depositing techniques
Analyses of laser and furnace treated sol-gel coatings
Here we explore a new method that allows thin films to be made with almost any composition and degree of porosity by means of a combination of sol-gel and laser technology. Results are presented for furnace and laser treated TEOTI-(tetraethylorthotitanate as sol precursor) coated silicon samples. From detailed X-ray analyses it appeared that the TEOTi-derived sol-gel coatings experience crystallisation during furnace as well as laser treatment. The resulting TiO2 is present in two different tetragonal phases. As far as the residual stress measurements on the TEOTi derived sol-gel coatings are concerned it can be concluded that there is no significant tri-axial stress state present in the coating, which justifies the biaxial stress analysis
Sintering Behavior of Nanocrystalline Silicon Carbide Using a Plasma Pressure Compaction System: Master Sintering Curve Analysis
Nanostructured ceramics offer significant improvements in properties over corresponding materials with larger grain sizes on the order of tens to hundreds of micrometers. Silicon carbide (SiC) samples with grain sizes on the order of 100 nm can result in improved strength, chemical resistance, thermal stability, and tailored electrical resistivity. In this study, nanocrystalline SiC was processed in a plasma pressure compaction ((PC)-C-2) system at a temperature of 1973 K (1700 A degrees C) that was much lower than the temperatures reported for other sintering techniques. Microstructure of the resulting samples was studied and the hardness and the fracture toughness were measured. The grain sizes were on the order of 700 nm, the hardness between 22 and 24 GPa, and the toughness between 5 and 6.5 MPa center dot m(1/2). The master sintering curve (MSC) analysis was used to model the densification behavior of SiC powder sintered by the (PC)-C-2 method. The apparent activation energies for three different pressures of 10, 30, and 50 MPa were obtained to be 1666, 1034, and 1162 kJ/mol, respectively. Although densification occurs via diffusion, the activation energies were higher than those associated with self-diffusion in SiC (between 570 and 920 kJ/mol). A validation study of the MSC was also conducted and the variation in observed density from the density predicted by the MSC was found to range from 1 to 10 pct.open111010sciescopu