46,620 research outputs found
Thurston's metric on Teichm\"uller space and the translation lengths of mapping classes
We show that the Teichm\"uller space of a surface without boundary and with
punctures, equipped with Thurston's metric is the limit (in an appropriate
sense) of Teichm\"uller spaces of surfaces with boundary, equipped with their
arc metrics, when the boundary lengths tend to zero. We use this to obtain a
result on the translation distances for mapping classes for their actions on
Teichm\"uller spaces equipped with their arc metrics
Self-modifiable color petri nets for modeling user manipulation and network event handling
A Self-Modifiable Color Petri Net (SMCPN) which has multimedia synchronization capability and the ability to model user manipulation and network event (i.e. network congestion, etc.) handling is proposed in this paper. In SMCPN, there are two types of tokens: resource tokens representing resources to be presented and color tokens with two sub-types: one associated with some commands to modify the net mechanism in operation, another associated with a number to decide iteration times. Also introduced is a new type of resource token named reverse token that moves to the opposite direction of arcs. When user manipulation/network event occurs, color tokens associated with the corresponding interrupt handling commands will be injected into places that contain resource tokens. These commands are then executed to handle the user manipulation/network event. SMCPN has the desired general programmability in the following sense: 1) It allows handling of user manipulations or pre-specified events at any time while keeping the Petri net design simple and easy. 2) It allows the user to customize event handling beforehand. This means the system being modeled can handle not only commonly seen user interrupts (e.g. skip, reverse, freeze), the user is free to define new operations including network event handling. 3) It has the power to simulate self-modifying protocols. A simulator has been built to demonstrate the feasibility of SMCPN
Recommended from our members
Modeling interactive memex-like applications based on self-modifiable petri nets
This paper introduces an interactive Memex-like application using a self-modifiable Petri Net model – Self-modifiable Color Petri Net (SCPN). The Memex (“memory extender”) device proposed by Vannevar Bush in 1945 focused on the problems of “locating relevant information in the published records and recording how that information is intellectually connected.” The important features of Memex include associative indexing and retrieval. In this paper, the self-modifiable functions of SCPN are used to achieve trail recording and retrieval. A place in SCPN represents a website and an arc indicates the trail direction. Each time when a new website is visited, a place corresponding to this website will be added. After a trail is built, users can use it to retrieve the websites they have visited. Besides, useful user interactions are supported by SCPN to achieve Memex functions. The types of user interactions include: forward, backward, history, search, etc. A simulator has been built to demonstrate that the SCPN model can realize Memex functions. Petri net instances can be designed to model trail record, back, and forward operations using this simulator. Furthermore, a client-server based application system has been built. Using this system, a user can surf online and record his surfing history on the server according to different topics and share them with other users
Recommended from our members
Incremental evolution strategy for function optimization
This paper presents a novel evolutionary approach for function optimization Incremental Evolution Strategy (IES). Two strategies are proposed. One is to evolve the input variables incrementally. The whole evolution consists of several phases and one more variable is focused in each phase. The number of phases is equal to the number of variables in maximum. Each phase is composed of two stages: in the single-variable evolution (SVE) stage, evolution is taken on one independent variable in a series of cutting planes; in the multi-variable evolving (MVE) stage, the initial population is formed by integrating the populations obtained by the SVE and the MVE in the last phase. And the evolution is taken on the incremented variable set. The other strategy is a hybrid of particle swarm optimization (PSO) and evolution strategy (ES). PSO is applied to adjust the cutting planes/hyper-planes (in SVEs/MVEs) while (1+1)-ES is applied to searching optima in the cutting planes/hyper-planes. The results of experiments show that the performance of IES is generally better than that of three other evolutionary algorithms, improved normal GA, PSO and SADE_CERAF, in the sense that IES finds solutions closer to the true optima and with more optimal objective values
Mechanisms of Auger-induced chemistry derived from wave packet dynamics
To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C_(197)H_(112). We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517–S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics
HIV dynamics and natural history studies: Joint modeling with doubly interval-censored event time and infrequent longitudinal data
Hepatitis C virus (HCV) coinfection has become one of the most challenging
clinical situations to manage in HIV-infected patients. Recently the effect of
HCV coinfection on HIV dynamics following initiation of highly active
antiretroviral therapy (HAART) has drawn considerable attention. Post-HAART HIV
dynamics are commonly studied in short-term clinical trials with frequent data
collection design. For example, the elimination process of plasma virus during
treatment is closely monitored with daily assessments in viral dynamics studies
of AIDS clinical trials. In this article instead we use infrequent cohort data
from long-term natural history studies and develop a model for characterizing
post-HAART HIV dynamics and their associations with HCV coinfection.
Specifically, we propose a joint model for doubly interval-censored data for
the time between HAART initiation and viral suppression, and the longitudinal
CD4 count measurements relative to the viral suppression. Inference is
accomplished using a fully Bayesian approach. Doubly interval-censored data are
modeled semiparametrically by Dirichlet process priors and Bayesian penalized
splines are used for modeling population-level and individual-level mean CD4
count profiles. We use the proposed methods and data from the HIV Epidemiology
Research Study (HERS) to investigate the effect of HCV coinfection on the
response to HAART.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS391 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Recommended from our members
Evolving dynamic multiple-objective optimization problems with objective replacement
This paper studies the strategies for multi-objective optimization in a dynamic environment. In particular, we focus on problems with objective replacement, where some objectives may be replaced with new objectives during evolution. It is shown that the Pareto-optimal sets before and after the objective replacement share some common members. Based on this observation, we suggest the inheritance strategy. When objective replacement occurs, this strategy selects good chromosomes according to the new objective set from the solutions found before objective replacement, and then continues to optimize them via evolution for the new objective set. The experiment results showed that this strategy can help MOGAs achieve better performance than MOGAs without using the inheritance strategy, where the evolution is restarted when objective replacement occurs. More solutions with better quality are found during the same time span
Classification of finite dimensional modules of singly atypical type over the Lie superalgebras sl(m/n)
We classify the finite dimensional indecomposable sl(m/n)-modules with at
least a typical or singly atypical primitive weight. We do this classification
not only for weight modules, but also for generalized weight modules. We obtain
that such a generalized weight module is simply a module obtained by
``linking'' sub-quotient modules of generalized Kac-modules. By applying our
results to sl(m/1), we have in fact completely classified all finite
dimensional sl(m/1)-modules.Comment: 17 pages, Late
Consensus-halving via Theorems of Borsuk-Ulam and Tucker
In this paper we show how theorems of Borsuk-Ulam and Tucker can be used to construct a consensus-halving: a division of an object into two portions so that each of n people believe the portions are equally split. Moreover, the division takes at most n cuts, which is best possible. This extends prior work using methods from combinatorial topology to solve fair division problems. Several applications of consensus-halving are discussed.
Degeneracy of Ground State in Two-dimensional Electron-Lattice System
We discuss the ground state of a two dimensional electron-lattice system
described by a Su-Schrieffer-Heeger type Hamiltonian with a half-filled
electronic band, for which it has been pointed out in the previous paper [J.
Phys. Soc. Jpn. 69 (2000) 1769-1776] that the ground state distortion pattern
is not unique in spite of a unique electronic energy spectrum and the same
total energy. The necessary and sufficient conditions to be satisfied by the
distortion patterns in the ground state are derived numerically. As a result
the degrees of degeneracy in the ground state is estimated to be about
for with the linear dimension of the system.Comment: 2pages, 2figure
- …