452 research outputs found

    Tropical Geometry of Statistical Models

    Get PDF
    This paper presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. The question addressed here is how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. A key role is played by the Newton polytope of a statistical model. Our results are applied to the hidden Markov model and to the general Markov model on a binary tree.Comment: 14 pages, 3 figures. Major revision. Applications now in companion paper, "Parametric Inference for Biological Sequence Analysis

    Computing Tropical Varieties

    Get PDF
    The tropical variety of a dd-dimensional prime ideal in a polynomial ring with complex coefficients is a pure dd-dimensional polyhedral fan. This fan is shown to be connected in codimension one. We present algorithmic tools for computing the tropical variety, and we discuss our implementation of these tools in the Gr\"obner fan software \texttt{Gfan}. Every ideal is shown to have a finite tropical basis, and a sharp lower bound is given for the size of a tropical basis for an ideal of linear forms.Comment: 22 pages, 2 figure

    Parametric Inference for Biological Sequence Analysis

    Get PDF
    One of the major successes in computational biology has been the unification, using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied towards these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems associated with different statistical models. This paper introduces the \emph{polytope propagation algorithm} for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.Comment: 15 pages, 4 figures. See also companion paper "Tropical Geometry of Statistical Models" (q-bio.QM/0311009

    Solving generic nonarchimedean semidefinite programs using stochastic game algorithms

    Full text link
    A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect information. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions + benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign patterns + some results have been replaced by references to the companion work arXiv:1610.0674

    A nonextremal Camion basis

    Get PDF
    AbstractWe construct a 3 × 21 matrix A and Camion basis B of A such that B does not correspond to an extreme point of the convex hull of basic solutions of Ax = b for any b ϵ R3. Computer algebra methods played a critical role in finding both the matrix A and an analytic proof that B is not extremal

    Rational hypergeometric functions

    Get PDF
    Multivariate hypergeometric functions associated with toric varieties were introduced by Gel\u27fand, Kapranov and Zelevinsky. Singularities of such functions are discriminants, that is, divisors projectively dual to torus orbit closures. We show that most of these potential denominators never appear in rational hypergeometric functions. We conjecture that the denominator of any rational hypergeometric function is a product of resultants, that is, a product of special discriminants arising from Cayley configurations. This conjecture is proved for toric hypersurfaces and for toric varieties of dimension at most three. Toric residues are applied to show that every toric resultant appears in the denominator of some rational hypergeometric function
    corecore