67 research outputs found
Defining instances and limbs during performance of the standing turn
Conventions have been reported to describe walking and turning gait. No such descriptions appear for the 180° standing turn and as such there are inconsistencies in the literature reporting on this movement. The complexity of explaining the standing turning motion, variation in number of steps when turning, and differing strategies used means conventions will make research reporting easier to comprehend and less likely for errors in interpretation. We propose definitions of the 180° standing turning motion and steps used to complete a turn for able-bodied and pathological populations to encourage consistency in reporting. It is recommended that the definitions be applied in future research on standing turns
Objective classification and scoring of movement deficiencies in patients with anterior cruciate ligament reconstruction
Motion analysis systems are widely employed to identify movement deficiencies-e.g. patterns that potentially increase the risk of injury or inhibit performance. However, findings across studies are often conflicting in respect to what a movement deficiency is or the magnitude of association to a specific injury. This study tests the information content within movement data using a data driven framework that was taught to classify movement data into the classes: NORM, ACLOP and ACLNO OP, without the input of expert knowledge. The NORM class was presented by 62 subjects (124 NORM limbs), while 156 subjects with ACL reconstruction represented the ACLOP and ACLNO OP class (156 limbs each class). Movement data from jumping, hopping and change of direction exercises were examined, using a variety of machine learning techniques. A stratified shuffle split cross-validation was used to obtain a measure of expected accuracy for each step within the analysis. Classification accuracies (from best performing classifiers) ranged from 52 to 81%, using up to 5 features. The exercise with the highest classification accuracy was the double leg drop jump (DLDJ; 81%), the highest classification accuracy when considering only the NORM class was observed in the single leg hop (81%), while the DLDJ demonstrated the highest classification accuracy when considering only for the ACLOP and ACLNO OP class (84%). These classification accuracies demonstrate that biomechanical data contains valuable information and that it is possible to differentiate normal from rehabilitating movement patterns. Further, findings highlight that a few features contain most of the information, that it is important to seek to understand what a classification model has learned, that symmetry measures are important, that exercises capture different qualities and that not all subjects within a normative cohort utilise 'true' normative movement patterns (only 27 to 71%)
The Associations between Asymmetries in Quadriceps Strength and Gait in Unilateral Transtibial Amputees
Background – Individuals with unilateral transtibial amputations (ITTAs) are asymmetrical in quadriceps strength. It is unknown if this is associated with gait performance characteristics such as walking speed and limb symmetry. Research Question – Are quadriceps strength asymmetries related to walking speed and/ or gait asymmetries in ITTAs?Methods – Knee-extensor isometric maximum voluntary torque (MVT) and rate of torque development (RTD) were measured in eight ITTAs. Gait data were captured as the ITTAs walked at self-selected habitual and fast speeds. Step length and single support time, peak knee extension moments and their impulse and peak vertical ground reaction force (vGRF) in the braking and propulsive phases of stance were extracted. Bilateral Asymmetry Index (BAI) and, for gait variables only, difference in BAI between walking speeds (ΔBAI) were calculated. Correlation analyses assessed the relationships between MVT and RTD asymmetry and (1) walking speed; (2) gait asymmetries.Results – Associations between strength and gait BAIs generally became more apparent at faster walking speeds, and when the difference in BAI between fast and habitual walking speed was considered. BAI RTD was strongly negatively correlated with habitual and fast walking speeds (r=~0.83). Larger BAI RTD was strongly correlated with propulsive vGRF BAI in fast walking, and larger ΔBAIs in vGRF during both the braking and propulsion phases of gait (r=0.74–0.92). ITTAs who exhibited greater BAI MVT showed greater ΔBAI in single support time (r=0.83). Significance – While MVT and RTD BAI appear to be associated with gait asymmetries in ITTAs, the magnitude of the asymmetry in RTD appears to be a more sensitive marker of walking speed. Based on these results, it’s possible that strengthening the knee-extensors of the amputated limb to improve both MVT and RTD symmetry may benefit walking speed, and reduce asymmetrical loading in gait.<br/
Foot strike alters ground reaction force and knee load when stepping down during ongoing walking  
- …