52 research outputs found

    Cyclin C is Sufficient for Myoblast Differentiation-Induced Mitochondrial Fragmentation

    Get PDF
    One of the largest and most dynamic tissues in the body, skeletal muscle, requires constant regeneration and upkeep. Dysregulation of this regeneration process has been implicated in many neuromuscular diseases and myotonic dystrophies. Regeneration requires the differentiation of myogenic lineages including exiting the cell cycle, gene expression changes, and fusing of myoblasts into multinucleate myotubes. Part of this reconstruction requires the breakdown and repopulation of mitochondrial networks. At the early onset of myoblast differentiation, there is an upregulation of dynamin-related protein, Drp1, and an increase in mitophagy mediated by sequestosome (SQSTM1) removal of mitochondria. Previously, our lab has shown that mitochondrial fragmentation following stress requires the transcriptional regulator cyclin C, the regulatory subunit for cyclin-dependent kinase 8 (Cdk8). Preliminary data indicate that cyclin C is required for mitochondrial fragmentation during myoblast differentiation. At the early onset, cyclin C co-localizes with the mitochondria, as visualized with indirect immunofluorescence. Cells were additionally treated with PFTμ, a cytosolic chaperone inhibitor that blocks translocation of cyclin C to the mitochondria, and in turn inhibition of cyclin C-mediated mitochondrial fragmentation. This treatment resulted in lack of mitochondrial fragmentation typically seen during the differentiation process. In addition, efficiency of differentiation was quantified using gene expression of myogenic regulatory factors (MRFs) MyoD and Myosin Heavy Chain (MyHC), which are normally expressed in a temporal manner throughout differentiation. PFTμ treatment significantly delayed the onset of MyoD. Our lab has previously identified a peptide S-HAD, that causes continual mitochondrial fragmentation via the release of cyclin C by targeting of the binding domain for nuclear retention. When treated with S-HAD, cells experienced impaired differentiation as seen through extensively fragmented mitochondria and lack of reticularity, as well as irregular expression of both MRFs via RT-qPCR. Based on these findings, it was determined that cyclin C is sufficient to induce mitochondrial fragmentation associated with myogenic differentiation

    Meiotic control of the APC/C: similarities & differences from mitosis

    Get PDF
    The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast

    Modeling the Role of Cyclin C in Connecting Stress-Induced Mitochondrial Fission to Apoptosis

    Get PDF
    For normal cell function, exogenous signals must be correctly interpreted, and the proper response executed. The mitochondria are key regulatory nodes of cellular fate. For example, mitochondria undergo fission and fusion cycles depending on the energetic needs of the cell. Additionally, regulated cell death pathways also function at the mitochondria. Cyclin C is a transcriptional regulator of stress response and growth control genes. Following stress, a portion of cyclin C translocates to the cytoplasm, where it interacts with both the mitochondrial fission and apoptotic machinery. Based on these findings, we hypothesize that Cyclin C represents a key mediator linking transcription to mitochondrial fission and intrinsic regulated cell death (iRCD). Cyclin C has two conserved cyclin box domains each composed of five alpha-helices, termed CB1 and CB2, which mediate protein-protein interactions with regards to transcriptional regulation (Cdk8) and mitochondrial fission (Drp1), respectively. Pull down studies show that both pro-apoptotic protein Bax and fission machinery protein Drp1 interact directly with cyclin C. Cyclin C interaction is required for Bax activation and efficient iRCD; however, Drp1 is required for this interaction to occur, suggesting a role for the interaction of all three proteins. Docking simulations show cyclin C and Bax interact directly through multiple sites within amino acids 160-170 of cyclin C. Inspection of this region shows a homologous BH2 sequence, similar to that of Bcl-2 protein family members. Prior work has demonstrated that while this sequence is required for Bax binding, it is not required for binding Drp1. To further support this, preliminary modeling data suggests Drp1 interaction is mediated through the latter half of CB2, which is downstream of this sequence. Taken together, these results suggest a model that cyclin C possesses three distinct interaction domains, leading cyclin C to physically bridge the fission and apoptotic machinery and allowing the cell to properly coordinate mitochondrial dynamics with iRCD pathways

    Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression

    Get PDF
    Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease

    Med13p Prevents Mitochondrial Fission and Programmed Cell Death in Yeast Through Nuclear Retention of Cyclin C

    Get PDF
    The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress-induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction

    Mechanistic Insights into the Regulation of Mitochondrial Fission by Cyclin C

    Get PDF
    Cyclin C is a component of the mediator complex of RNA polymerase II that localizes to the nucleus under normal conditions. In response to stress, cyclin C translocates to the cytosol and mitochondria and mediates stress‐induced mitochondrial fission and apoptosis. The molecular mechanisms by which cyclin C induces mitochondrial fission are unknown. Using in vitro experimental approaches, we sought to investigate the mechanistic basis of cyclin C mediated mitochondrial fission

    Stress-Induced Nuclear-to-Cytoplasmic Translocation of Cyclin C Promotes Mitochondrial Fission in Yeast

    Get PDF
    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C

    Cyclin C Mediates Stress-Induced Mitochondrial Fission and Apoptosis

    Get PDF
    Mitochondria are dynamic organelles that undergo constant fission and fusion cycles. In response to cellular damage, this balance is shifted dramatically toward fission. Cyclin C-Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochondrial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is independent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mitochondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mitochondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death in mammalian cells

    Translocation of Cyclin C During Oxidative Stress Is Regulated by Interactions with Multiple Trafficking Proteins

    Get PDF
    Eukaryotic cells take cues from their environment and interpret them to enact a response. External stresses can produce a decision between adjusting to behaviors which promote surviving the stress, or enacting a cell death program. The decision to undergo programmed cell death (PCD) is controlled by a complex interaction between nuclear and mitochondrial signals. The mitochondria are highly dynamic organelles that constantly undergo fission and fusion. However, a dramatic shift in mitochondrial morphology toward fission occurs early in the PCD process. We have identified the transcription factor cyclin C as the biochemical trigger for stress‐induced mitochondrial hyper‐fragmentation in yeast (Cooper et al., 2014 Dev. Cell) and mammalian (Wang et al., 2015, MCB) cells
    corecore